Handbook of Preformulation


Book Description

Preformulation studies are the physical, chemical, and biological studies needed to characterize a drug substance for enabling the proper design of a drug product, whereas the effectiveness of a drug product is determined during the formulation studies phase. Though the two disciplines overlap in practice, each is a significantly distinct phase of new drug development. Entirely focused on preformulation principles, this fully revised and updated Handbook of Preformulation: Chemical, Biological, and Botanical Drugs, Second Edition provides detailed descriptions of preformulation methodologies, gives a state-of-the-art description of each technique, and lists the currently available tools useful in providing a comprehensive characterization of a new drug entity. Features: Addresses the preformulation studies of three different types of new active entities - chemical, biological, and botanical, which is the latest established class of active ingredient classified by the FDA Illustrates the activities comprised in preformulation studies and establishes a method of tasking for drug development projects Includes extensive flow charts for characterization decision making Gives extensive theoretical treatment of principles important for testing dissolution, solubility, stability, and solid state characterization Includes over 50% new material




Innovative Dosage Forms


Book Description

Teaches future and current drug developers the latest innovations in drug formulation design and optimization This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation. Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life; preclinical formulation assessment of new chemical entities; and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations; accessing pharmacokinetics of various dosage forms; physical characterization techniques to assess amorphous nature; novel formulations for protein oral dosage; and more. -Provides information that is essential for the drug development effort -Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals -Describes current approaches in early pre-formulation to achieve the best in vivo results -Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies -Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.




Protein Refolding


Book Description

the refolding process is often the critical bottleneck in the production of high-value proteins, and recently acquired insights have yet to be translated into technological advantages. These proceedings bridge the gap between fundamental and applied studies, addressing such issues as in vivo protein folding, protein aggregation and inclusion body formation, elucidation of the folding pathway, characterization of folding intermediates, and practical considerations in protein renaturation. The symposium was part of the 199th ACS National Meeting, Boston, April 1990. Annotation copyrighted by Book News, Inc., Portland, OR







Preparation and Analysis of Protein Crystals


Book Description

Reprint. Originally published in 1982 by Wiley. McPherson (biochemistry, U. of Calif. Riverside) provides an interface between the techniques and practices common to most biochemists and the procedures familiar to x-ray diffractionists. Acidic paper. Annotation copyright Book News, Inc. Portland, Or




Crystallization of Biological Macromolecules


Book Description

This extensively illustrated book by Alexander McPherson, a master practitioner, accomplishes several important goals: it presents the underlying physical and chemical principles of crystallization in an approachable way; it provides the reader with a biochemical context in which to understand and pursue successful crystal growth; it instructs the reader in practical aspects of the technologies required; and it lays out effective strategies for success that investigators can readily apply to their own experimental questions. This readable volume has been created for every investigator in biomedicine whose studies may require a shift in focus from gene to protein product, as well as chemists and physicists interested in the functions of biologically active macromolecules.




Hot-Melt Extrusion


Book Description

Hot-melt extrusion (HME) - melting a substance and forcing it through an orifice under controlled conditions to form a new material - is an emerging processing technology in the pharmaceutical industry for the preparation of various dosage forms and drug delivery systems, for example granules and sustained release tablets. Hot-Melt Extrusion: Pharmaceutical Applications covers the main instrumentation, operation principles and theoretical background of HME. It then focuses on HME drug delivery systems, dosage forms and clinical studies (including pharmacokinetics and bioavailability) of HME products. Finally, the book includes some recent and novel HME applications, scale -up considerations and regulatory issues. Topics covered include: principles and die design of single screw extrusion twin screw extrusion techniques and practices in the laboratory and on production scale HME developments for the pharmaceutical industry solubility parameters for prediction of drug/polymer miscibility in HME formulations the influence of plasticizers in HME applications of polymethacrylate polymers in HME HME of ethylcellulose, hypromellose, and polyethylene oxide bioadhesion properties of polymeric films produced by HME taste masking using HME clinical studies, bioavailability and pharmacokinetics of HME products injection moulding and HME processing for pharmaceutical materials laminar dispersive & distributive mixing with dissolution and applications to HME technological considerations related to scale-up of HME processes devices and implant systems by HME an FDA perspective on HME product and process understanding improved process understanding and control of an HME process with near-infrared spectroscopy Hot-Melt Extrusion: Pharmaceutical Applications is an essential multidisciplinary guide to the emerging pharmaceutical uses of this processing technology for researchers in academia and industry working in drug formulation and delivery, pharmaceutical engineering and processing, and polymers and materials science. This is the first book from our brand new series Advances in Pharmaceutical Technology. Find out more about the series here.




Handbook of Pharmaceutical Salts Properties, Selection, and Use


Book Description

This comprehensive up-to-date guide and information source is an instructive companion for all scientists involved in research and development of drugs and, in particular, of pharmaceutical dosage forms. The editors have taken care to address every conceivable aspect of the preparation of pharmaceutical salts and present the necessary theoretical foundations as well as a wealth of detailed practical experience in the choice of pharmaceutically active salts. Altogether, the contributions reflect the multidisciplinary nature of the science involved in selection of suitable salt forms for new drug products.




Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics


Book Description

Solvent systems are integral to drug development and pharmaceutical technology. This single topic encompasses numerous allied subjects running the gamut from recrystallization solvents to biorelevant media. The goal of this contribution to the AAPS Biotechnology: Pharmaceutical Aspects series is to generate both a practical handbook as well as a reference allowing the reader to make effective decisions concerning the use of solvents and solvent systems. To this end, the monograph was created by inviting recognized experts from a number of fields to author relevant sections. Specifically, 15 chapters have been designed covering the theoretical background of solubility, the effect of ionic equilibria and pH on solubilization, the use of solvents to effect drug substance crystallization and polymorph selection, the use of solvent systems in high throughput screening and early discovery, solvent use in preformulation, the use of solvents in bio-relevant dissolution and permeation experiments, solvents and their use as toxicology vehicles, solubilizing media and excipients in oral and parenteral formulation development, specialized vehicles for protein formulation and solvent systems for topical and pulmonary drug administration. The chapters are organized such that useful decision trees are included together with the scientific underpinning for their application. In addition, trends in the use of solvent systems and a balance of current views make this monograph useful to both the novice and experienced researcher and to scientists at all developmental stages from early discovery to late pharmaceutical operations.




Handbook of Solubility Data for Pharmaceuticals


Book Description

Aqueous solubility is one of the major challenges in the early stages of drug discovery. One of the most common and effective methods for enhancing solubility is the addition of an organic solvent to the aqueous solution. Along with an introduction to cosolvency models, the Handbook of Solubility Data for Pharmaceuticals provides an extensive datab