Aluminium Alloys


Book Description

The major issue of energy saving and conservation of the environment in the world is being emphasized to us to concentrate on lightweight materials in which aluminium alloys are contributing more in applications in the twenty-first century. Aluminium and its related materials possess lighter weight, considerable strength, more corrosion resistance and ductility. Especially from the past one decade, the use of aluminium alloys is increasing in construction field, transportation industries, packaging purposes, automotive, defence, aircraft and electrical sectors. Around 85% is being used in the form of wrought products, which replace the use of cast iron. Further, the major features of aluminium alloy are recyclability and its abundant availability in the world. In general, aluminium and its related materials are being processed via casting, drawing, forging, rolling, extrusion, welding, powder metallurgy process, etc. To improve the physical and mechanical properties, scientists are doing more research and adding some second-phase particles in to it called composites in addition to heat treatment. Therefore, to explore more in this field, the present book has been aimed and focused to bridge all scientists who are working in this field. The main objective of the present book is to focus on aluminium, its alloys and its composites, which include, but are not limited to, the various processing routes and characterization techniques in both macro- and nano-levels.




Metallic Materials with High Structural Efficiency


Book Description

In the fall of 1998, Prof. Sergey Firstov invited me to the Frantcevych Institute for Problems of Materials Science (IPMS) in Kyiv, Ukraine to discuss possible collaborations in the area of advanced metals research. During this visit, a strong mutual interest was evident in a broad range of structural metals technologies, and a quick friendship was established. Countless subsequent emails and a reciprocal visit to the U. S Air Force Research Laboratory by Prof. Firstov and a team of scientists from IPMS ensued to discuss and detail a broad collaboration in the area of structural metals. Two years after the initial visit, a major investment by the U. S. Air Force Office of Scientific Research (AFOSR) was established to pursue the technologies defined by these interactions. The annual reviews of the AFOSR Ukrainian Metals Initiative were held in late May, a most beautiful time in Kyiv when the lilacs are in bright display and the air is scented with the smell of falling blossoms from the chestnut trees that line the major streets and many parks. The sunny days and mild evenings provide a welcome break from winter, and on weekend evenings festive crowds spill onto the Khreshchatyk, Kyiv’s downtown boulevard, to listen to street musicians, watch jugglers and comedians, or simply to celebrate with friends. The annual reviews featured long days of intensive discussion of technical progress, followed in the evenings by the warm hospitality of the Ukrainian hosts.




The Welding of Aluminium and Its Alloys


Book Description

The Welding of Aluminium and its Alloys is a practical user's guide to all aspects of welding aluminium and aluminium alloys. It provides a basic understanding of the metallurgical principles involved showing how alloys achieve their strength and how the process of welding can affect these properties. The book is intended to provide engineers with perhaps little prior understanding of metallurgy and only a brief acquaintance with the welding processes involved with a concise and effective reference to the subject.It is intended as a practical guide for the Welding Engineer and covers weldability of aluminium alloys; process descriptions, advantages, limitations, proposed weld parameters, health and safety issues; preparation for welding, quality assurance and quality control issues along with problem solving.The book includes sections on parent metal storage and preparation prior to welding. It describes the more frequently encountered processes and has recommendations on welding parameters that may be used as a starting point for the development of a viable welding procedure. Included in these chapters are hints and tips to avoid some of the pitfalls of welding these sometimes-problematic materials. The content is both descriptive and qualitative. The author has avoided the use of mathematical expressions to describe the effects of welding.This book is essential reading for welding engineers, production engineers, production managers, designers and shop-floor supervisors involved in the aluminium fabrication industry. - A practical user's guide by a respected expert to all aspects of welding of aluminium - Designed to be easily understood by the non-metallurgist whilst covering the most necessary metallurgical aspects - Demonstrates best practice in fabricating aluminium structures




Al-Si Alloys


Book Description

This book details aluminum alloys with special focus on the aluminum silicon (Al‐Si) systems – that are the most abundant alloys second only to steel. The authors include a description of the manufacturing principles, thermodynamics, and other main characteristics of Al‐Si alloys. Principles of processing, testing, and in particular applications in the Automotive, Aeronautical and Aerospace fields are addressed.




Rapidly Solidified Alloys


Book Description

This volume details the principles underlying rapid solidification processing, material structure and properties, and their applications. This practical resource presents a manifold approach to both amorphous and crystalline rapidly solidified metallic alloys.;Written by over 30 internationally acclaimed specialists in their respective fields, Rapidly Solidified Alloys: surveys nucleation and growth studies in undercooled melts; examines various processes for the production of rapidly solidified alloys; discusses the compaction of amorphous alloys; describes surface remelting treatments for the rapid solidification of surface layers and the resultant improved workpiece properties; covers the closely related topics of structural relaxation, atomic transport and other thermally induced processes; demonstrates microstructure-property relationships in rapidly quenched crystalline alloy systems and their beneficial effects in applications; and elucidates the basic, engineeering, and applications-oriented magnetic properties of amorphous alloys.;Furnishing more than 2300 literature citations for further study of specific subjects, Rapidly Solidified Alloys is intended for materials, mechanical, product, and civil engineers; metallurgists; magneticians; physicists; physical chemists; and graduate students in these disciplines.




Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys


Book Description

Despite decades of extensive research and application, commercial aluminum alloys are still poorly understood in terms of the phase composition and phase transformations occurring during solidification, cooling, and heating. Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys aims to apply multi-component phase diagrams to commercial aluminum alloys, and give a comprehensive coverage of available and assessed phase diagrams for aluminum-based alloy systems of different dimensionality. - Features data on non-equilibrium phase diagrams, which can rarely be obtained from other publications - Extensive coverage of all groups of commercially important alloys and materials




The Science and Technology of Materials in Automotive Engines


Book Description

The science and technology of materials in automotive engines provides an introductory text on the nature of the materials used in automotive engines. It focuses on reciprocating engines, both four and two stroke, with particular emphasis on their characteristics and the types of materials used in their construction. The book considers the engine in terms of each specific part: the cylinder, piston, camshaft, valves, crankshaft, connecting rod and catalytic converter. The materials used in automotive engines are required to fulfil a multitude of functions. It is a subtle balance between material properties, essential design and high performance characteristics. The science and technology of materials in automotive engines describes the metallurgy, chemical composition, manufacturing, heat treatment and surface modification of these materials. It also includes supplementary notes that support the core text.The book is essential reading for engineers and designers of engines, as well as lecturers and graduate students in the fields of automotive engineering, machine design and materials science looking for a concise, expert analysis of automotive materials. - Provides a detailed introduction to the nature of materials used in automotive engines - Essential reading for engineers, designers, lecturers and students in automotive engineering - Written by a renowned expert in the field




Advanced Aluminum Alloys Containing Scandium


Book Description

This is the first book to generalize and analyze the extensive experimental and theoretical results on the phase composition, structure, and properties of aluminum alloys containing scandium. The effects of scandium on these properties are studied from a physico- chemical viewpoint. The authors present binary, ternary, and more complex phase diagrams for these alloys and consider in detail recrystallization, superplastic behavior, and decomposition of supersaturated solid solutions and the effects of solidification conditions on phase equilibria.




Surface Engineering of Light Alloys


Book Description

The growing use of light alloys in industries such as aerospace, sports equipment and biomedical devices is driving research into surface engineering technologies to enhance their properties for the desired end use. Surface engineering of light alloys: Aluminium, magnesium and titanium alloys provides a comprehensive review of the latest technologies for modifying the surfaces of light alloys to improve their corrosion, wear and tribological properties.Part one discusses surface degradation of light alloys with chapters on corrosion behaviour of magnesium alloys and protection techniques, wear properties of aluminium-based alloys and tribological behaviour of titanium alloys. Part two reviews surface engineering technologies for light alloys including anodising, plasma electrolytic oxidation, thermal spraying, cold spraying, physical vapour deposition, plasma assisted surface treatment, PIII/PSII treatments, laser surface modification, ceramic conversion and duplex treatments. Part three covers applications for surface engineered light alloys including sports equipment, biomedical devices and plasma electrolytic oxidation and anodised aluminium alloys for spacecraft applications.With its distinguished editor and international team of contributors, Surface engineering of light alloys: Aluminium, magnesium and titanium alloys is a standard reference for engineers, metallurgists and materials scientists looking for a comprehensive source of information on surface engineering of aluminium, magnesium and titanium alloys. - Discusses surface degradation of light alloys considering corrosion behaviour and wear and tribological properties - Examines surface engineering technologies and modification featuring plasma electrolytic oxidation treatments and both thermal and cold spraying - Reviews applications for engineered light alloys in sports equipment, biomedical devices and spacecraft