Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded


Book Description

A discussion of the theories, operating characteristics, and current technology of main fiber laser and amplifier devices based on rare-earth-doped silica and fluorozirconate fibers. It describes the principles, designs, and properties of the erbium-doped fiber amplifier and its role as the cornerstone component in optical communication systems. This second edition contains new and revised material reflecting major developments in academia and industry.




Erbium-Doped Fiber Amplifiers


Book Description

Erbium Fiber Amplifiers is a comprehensive introduction to the increasingly important topic of optical amplification. Written by three Bell Labs pioneers, the book stresses the importance of the interrelation of materials properties, optical properties, and systems aspects of optical fiber amplifiers. All disc-based content for this title is now available on the Web. Key Features* Explains the theory of noise in optically amplified systems in an intuitive way* The book contains a discussion of components used in amplifier fabrication and of the attendant technologies used in real systems* The book provides basic tools for amplifier design as well as systems engineering, including the latest developments in WDM and soliton systems* The book discusses the fundamentals of rare earth ions for the reader desiring more depth in the topic* The book is for either the novice of experienced reader* The chapter have links between them to allow the reader to understand the relationship between the amplifier characteristics, noise, and systems applications* The book contains extensive references




Fundamentals of Fiber Lasers and Fiber Amplifiers


Book Description

This book covers the fundamental aspects of fiber lasers and fiber amplifiers, and includes a wide range of material from laser physics fundamentals to state-of-the-art topics, as well as industrial applications in the rapidly growing field of quantum electronics. Emphasis is placed on the nonlinear processes taking place in fiber lasers and amplifiers, their similarities, differences to, and their advantages over other solid-state lasers. The reader will learn basic principles of solid-state physics and optical spectroscopy of laser active centers in fibers, main operational laser regimes, and practical recommendations and suggestions on fiber laser research, laser applications, and laser product development. The book will be useful for students, researchers, and professionals who work with lasers, in the optical communications, chemical and biological industries.




Optical Fiber Amplifiers


Book Description

Prepared by six leading professionals in the industry, this comprehensive reference helps you better understand the basic phenomena behind OF amplifiers -- and gives you the practical knowledge you need to design and produce OF systems. Includes 180 equations and nearly 240 illustrations.




Applications of Nonlinear Fiber Optics


Book Description

The development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments. The book presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The extensively revised chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. New material focuses on the applications of highly nonlinear fibers in areas ranging from wavelength laser tuning and nonlinear spectroscopy to biomedical imaging and frequency metrology. Technologies such as quantum cryptography, quantum computing, and quantum communications are also covered in a new chapter. This book will be an ideal reference for: R&D engineers working on developing next generation optical components; scientists involved with research on fiber amplifiers and lasers; graduate students and researchers working in the fields of optical communications and quantum information. The only book on how to develop nonlinear fiber optic applications Two new chapters on the latest developments; Highly Nonlinear Fibers and Quantum Applications Coverage of biomedical applications




Raman Amplification in Fiber Optical Communication Systems


Book Description

Optical fiber telecommunications depend upon light traveling great distances through optical fibers. As light travels it tends to disperse and this results in some degree of signal loss. Raman amplification is a technique that is effective in any fiber to amplify the signal light as it travels through transmission fibers, compensating for inevitable signal loss. - First comprehensive guide to Raman amplification, a technique whose use has exploded since 1997 in order to upgrade fiber capacity - Accessible to professionals just entering the field of optical fiber telecommunications - Detailed enough for experts to use as a reference




Bismuth


Book Description

Bismuth—a wonder metal with unique features—plays an important role in the bismuth-related optoelectronic materials. The innovative development of bismuth optoelectronic materials will undoubtedly drive the social development and economic growth in the world towards a glorious future.




Optical Fiber Communications


Book Description

Beginning with an overview of historical development, the electromagnetic spectrum, and optical power basics, this book offers an in-depth discussion of optic receivers, optical transmitters and amplifiers. The text discusses attenuation, transmission losses, optical sources such as semiconductor light emitting diodes, and lasers, providing several dispersion-management schemes that restore the amplified signal to its original state. Topics are discussed in a structured manner, with definitions, explanations, examples, illustrations, and informative facts. Extensive pedagogical features, such as numerical problems, review questions, multiple choice questions, and student-focussed learning objectives, are also provided. Mathematical derivations and geometrical representations are included where necessary. This text will be useful for undergraduate and graduate students of electronics, communication engineering, and optical fiber communications.




Handbook of Optical Fibers


Book Description

This research- and application-oriented book covers main topical areas of optical fibers. The selection of the chapters is weighted on technological and application-specific topics, very much a reflection of where research is heading to and what researchers are looking for. Chapters are arranged in a user-friendly format essentially self-contained and with extensive cross-references. They are organized in the following sections: - Optical Fiber Communication | Editors: Ming-Jun Li and Chao Lu - Solitons and Nonlinear Waves in Optical Fibers | Editor: Boris A. Malomed - Optical Fiber Fabrication | Editor: Hairul Azhar Bin Abdul Rashid - Active Optical Fibers | Editor: Kyunghwan Oh - Special Optical Fibers | Editors: Perry Shum and Zhilin Xu - Optical Fiber Measurement | Editor: Jianzhong Zhang - Optical Fiber Devices | Editors: John Canning and Tuan Guo - Optical Fiber Device Measurement | Editor: Yanhua Luo - Distributed Optical Fiber Sensing | Editor: Yosuke Mizuno - Optical Fiber Sensors for Industrial Applications | Editor: Tong Sun OBE - Polymer Optical Fiber Sensing | Editor: Ginu Rajan - Photonic Crystal Fiber Sensing | Editor: D. N. Wang - Optical Fiber Microfluidic Sensors | Editor: Yuan Gong




Coherent Laser Beam Combining


Book Description

Laser beam combining techniques allow increasing the power of lasers far beyond what it is possible to obtain from a single conventional laser.One step further, coherent beam combining (CBC) also helps to maintain the very unique properties of the laser emission with respect to its spectral and spatial properties. Such lasers are of major interest for many applications, including industrial, environmental, defense, and scientific applications. Recently, significant progress has beenmade in coherent beam combining lasers, with a total output power of 100 kW already achieved. Scaling analysis indicates that further increase of output power with excellent beam quality is feasible by using existing state-of-the-art lasers. Thus, the knowledge of coherent beam combining techniques will become crucial for the design of next-generation highpower lasers. The purpose of this book is to present the more recent concepts of coherent beam combining by world leader teams in the field.