Rate Equations in Semiconductor Electronics


Book Description

This book presents a novel approach to the teaching of dynamic aspects of the operation of semiconductor and opto-electronic devices. Such dynamic aspects often determine the steady state conditions. Also, the dynamical operation of such devices is of increasing importance as modern methods of communicating data and information require electronic devices that switch electrical or optical signals at ever faster rates. The author discusses the rates at which electrons and holes can reach equilibrium, the rates at which transistors and diodes can switch, and the rates at which electrons and holes can interact with photons, and with protons. He also applies the rate equations in a unified way to models of light-emitting diodes, injection lasers and photodiodes. Finally, the author discusses more-advanced topics on the photon statistics of injection lasers, mode-locking and the application of rate equations and Maxwell's equations to opto-electronic devices.







The Stationary Semiconductor Device Equations


Book Description

In the last two decades semiconductor device simulation has become a research area, which thrives on a cooperation of physicists, electrical engineers and mathe maticians. In this book the static semiconductor device problem is presented and analysed from an applied mathematician's point of view. I shall derive the device equations - as obtained for the first time by Van Roosbroeck in 1950 - from physical principles, present a mathematical analysis, discuss their numerical solu tion by discretisation techniques and report on selected device simulation runs. To me personally the most fascinating aspect of mathematical device analysis is that an interplay of abstract mathematics, perturbation theory, numerical analysis and device physics is prompting the design and development of new technology. I very much hope to convey to the reader the importance of applied mathematics for technological progress. Each chapter of this book is designed to be as selfcontained as possible, however, the mathematical analysis of the device problem requires tools which cannot be presented completely here. Those readers who are not interested in the mathemati cal methodology and rigor can extract the desired information by simply ignoring details and proofs of theorems. Also, at the beginning of each chapter I refer to textbooks which introduce the interested reader to the required mathematical concepts.




Physics of Semiconductor Devices


Book Description

Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.




A Handbook of Semiconductor Physics


Book Description

"A Handbook of Semiconductor Physics" serves as an indispensable guide tailored for absolute beginners seeking a comprehensive understanding of semiconductor physics. Written with clarity and precision, this handbook demystifies complex concepts and equations, making them accessible and engaging for readers at all levels. From fundamental principles to advanced topics, each chapter provides clear explanations, practical examples, and insightful illustrations, facilitating a smooth learning curve. Whether you're a student, researcher, or enthusiast, this book equips you with the essential knowledge and tools to navigate the fascinating world of semiconductor physics with confidence and curiosity.




Transport Equations for Semiconductors


Book Description

Semiconductor devices are ubiquitous in the modern computer and telecommunications industry. A precise knowledge of the transport equations for electron flow in semiconductors when a voltage is applied is therefore of paramount importance for further technological breakthroughs. In the present work, the author tackles their derivation in a systematic and rigorous way, depending on certain key parameters such as the number of free electrons in the device, the mean free path of the carriers, the device dimensions and the ambient temperature. Accordingly a hierarchy of models is examined which is reflected in the structure of the book: first the microscopic and macroscopic semi-classical approaches followed by their quantum-mechanical counterparts.




Theory of Semiconductor Lasers


Book Description

This book provides a unified and complete theory for semiconductor lasers, covering topics ranging from the principles of classical and quantum mechanics to highly advanced levels for readers who need to analyze the complicated operating characteristics generated in the real application of semiconductor lasers. The author conducts a theoretical analysis especially on the instabilities involved in the operation of semiconductor lasers. A density matrix into the theory for semiconductor lasers is introduced and the formulation of an improved rate equation to help understand the mode competition phenomena which cause the optical external feedback noise is thoroughly described from the basic quantum mechanics. The derivation of the improved rate equation will allow readers to extend the analysis for the different types of semiconductor materials and laser structures they deal with. This book is intended not only for students and academic researchers but also for engineers who develop lasers for the market, as the advanced topics covered are dedicated to real problems in implementing semiconductor lasers for practical use.




Distributed Feedback Semiconductor Lasers


Book Description

Concentrating on presenting a thorough analysis of DFB lasers from a level suitable for research students, this book emphasises and gives extensive coverage of computer aided modeling techniques.




Noise in Semiconductor Devices


Book Description

Provides an overview of the physical basis of noise in semiconductor devices, and a detailed treatment of numerical noise simulation in small-signal conditions. It presents innovative developments in the noise simulation of semiconductor devices operating in large-signal quasi-periodic conditions.




Optoelectronic Devices


Book Description

Optoelectronic devices transform electrical signals into optical signals (and vice versa) by utilizing the interaction of electrons and light. Advanced software tools for the design and analysis of such devices have been developed in recent years. However, the large variety of materials, devices, physical mechanisms, and modeling approaches often makes it difficult to select appropriate theoretical models or software packages. This book presents a review of devices and advanced simulation approaches written by leading researchers and software developers. It is intended for scientists and device engineers in optoelectronics who are interested in using advanced software tools. Each chapter includes the theoretical background as well as practical simulation results that help the reader to better understand internal device physics. Real-world devices such as edge-emitting or surface-emitting laser diodes, light-emitting diodes, solar cells, photodetectors, and integrated optoelectronic circuits are investigated. The software packages described in the book are available to the public, on a commercial or noncommercial basis, so that the interested reader is quickly able to perform similar simulations.