Templated Fabrication of Graphene-Based Materials for Energy Applications


Book Description

Templated Fabrication of Graphene-Based aterials for Energy Applications An illuminating look at the latest research on graphene-based materials and their applications in energy In Templated Fabrication of Graphene-Based Materials for Energy Applications, a team of distinguished materials scientists delivers a unique and topical exploration of a versatile fabrication method used to create high-quality graphene and composites. The book offers a three-part approach to current topics in graphene fabrication. The first part introduces graphene-based materials and is followed by cutting-edge discussions of template methods used in the preparation of graphene-based materials. The editors conclude with the latest research in the area of graphene-based materials applications in various energy-related pursuits. Readers will find relevant content that refers to original research conducted by the editors themselves, as well as work from up-and-coming and established researchers that explores the most interesting horizons in the study of graphene-based materials. The book also provides: A thorough introduction to graphene, including its history and physical properties An in-depth analysis of current graphene synthesis strategies, including the classification of graphene preparations Expansive discussions of various kinds of template methods for graphene production, including the study of porous metals and the preparation of graphene in large quantities Comprehensive explorations of the applications of various graphene-based materials, including lithium-ion batteries, lithium-sulfur batteries, and supercapacitors Perfect for materials scientists, electrochemists, and solid-state physicists, Templated Fabrication of Graphene-Based Materials for Energy Applications will also earn a place in the libraries of physical chemists and professionals in the electrotechnical industry.







Graphene-based Energy Devices


Book Description

This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic fuel cells, with chapters on graphene photovoltaics rounding off the book. Throughout, device architectures are not only discussed on a laboratory scale, but also ways for upscaling to an industrial level, including manufacturing processes and quality control. By bridging academic research and industrial development this is invaluable reading for materials scientists, physical chemists, electrochemists, solid state physicists, and those working in the electrotechnical industry.




Rational Design of Multi-Functional Nanomaterials


Book Description

One of the most important issues, when a nanomaterial is designed, is to control the synthetic pathways to ensure the final desired product. A combination of dry and wet procedures, as well as chemical and physical methodologies, it is possible to successfully prepare new multifunctional nanomaterials, often as a result of multidisciplinary cooperation between chemists, physics, biologist, physicians, material engineers, etc. Drug delivery, environmental detection of contaminants, and many industrial applications directly rely on properties such as water solubility, permeability, cell penetration, shape control, and size of the monodispersed nanoparticle, among others. Functionalized nanomaterials play a crucial role in modern research areas because of their unique physical and chemical properties, explored in many different fields including medicine and biology, new materials, pharmacology as drug delivery systems, and in environmental analysis for sensing new contaminants, among other technical and industrial applications. For future technological applications, the rational design of these multifunctional nanomaterials is critical, and often depends on the excellent control of the organic and inorganic chemical reactions involved during production. The success of their applications relies directly on the photophysical properties created in the final material, including the emission of light or colorimetric responses, water solubility, selectivity, sensitivity, stability, etc. For example, from an analytical point of view, the detection and quantification of emerging analytes is directly dependent on the selectivity and sensitivity showed by the material in a complex media.




Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems


Book Description

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics.




Additive Manufacturing


Book Description

This book focuses on the advances of additive manufacturing in the applications of wearable electronics, energy storage, biomedical implants and devices, drug delivery, and technologies for 4D printing, large-scale printing, and ceramics printing. It provides timely insights into the materials, functionalities, and applications of additive manufacturing.




Handbook of Graphene, Volume 5


Book Description

The fifth volume in a series of handbooks on graphene research and applications Graphene is a valuable nanomaterial used in technology. The Handbook of Graphene: Graphene in Energy, Healthcare, and Environmental Applications is the fifth volume in the handbook series. The book's topics include: graphene nanomaterials in energy and environment applications and graphene used as nanolubricant. Within the handbook, three-dimensional graphene materials are discussed, as are synthesis and applications in electrocatalysts and electrochemical sensors. The battery topics cover: graphene and graphene-based hybrid composites for advanced rechargeable battery electrodes; graphene-based materials for advanced lithium-ion batteries; graphene-based materials for supercapacitors and conductive additives of lithium ion batteries. The book's graphene-based sensor information addresses flexible actuators, sensors, and supercapacitors.




Chemically Deposited Metal Chalcogenide-based Carbon Composites for Versatile Applications


Book Description

This book satisfies the interest and curiosity of beginners in thin film electrode preparations, characterizations, and device making, while providing insight into the area for experts. The considerable literature on ‘metal chalcogenides based carbon composites and their versatile applications’ reflect its importance for research and demonstrate how it’s now reached a level where the timely review is necessary to understand the current progress and recent trends and future opportunities. In the book, the authors examine recent advances in the state-of-the-art fabrication techniques of metal sulfide based carbon composites along with their working mechanisms, associated issues/solutions, and possible future are discussed. In addition, detailed insight into the properties and various applications including principles, design, fabrication, and engineering aspects are further discussed.




Flexible and Stretchable Medical Devices


Book Description

The book introduces flexible and stretchable wearable electronic systems and covers in detail the technologies and materials required for healthcare and medical applications. A team of excellent authors gives an overview of currently available flexible devices and thoroughly describes their physical mechanisms that enable sensing human conditions. In dedicated chapters, crucial components needed to realize flexible and wearable devices are discussed which include transistors and sensors and deal with memory, data handling and display. Additionally, suitable power sources based on photovoltaics, thermoelectric energy and supercapacitors are reviewed. A special chapter treats implantable flexible sensors for neural recording. The book editor concludes with a perspective on this rapidly developing field which is expected to have a great impact on healthcare in the 21st century.




Inorganic Nanomaterials for Supercapacitor Design


Book Description

Among electrode materials, inorganic materials have received vast consideration owing to their redox chemistry, chemical stability, high electrochemical performance, and high-power applications. These exceptional properties enable inorganic-based materials to find application in high-performance energy conversion and storage. The current advances in nanotechnology have uncovered novel inorganic materials by various strategies and their different morphological features may serve as a rule for future supercapacitor electrode design for efficient supercapacitor performance. Inorganic Nanomaterials for Supercapacitor Design depicts the latest advances in inorganic nanomaterials for supercapacitor energy storage devices. Key Features:  Provides an overview on the supercapacitor application of inorganic-based materials.  Describes the fundamental aspects, key factors, advantages, and challenges of inorganic supercapacitors.  Presents up-to-date coverage of the large, rapidly growing, and complex literature on inorganic supercapacitors.  Surveys current applications in supercapacitor energy storage.  Explores the new aspects of inorganic materials and next-generation supercapacitor systems.