Reaction Engineering, Catalyst Preparation, and Kinetics


Book Description

This book serves as an introduction to the subject, giving readers the tools to solve real-world chemical reaction engineering problems. It features a section of fully solved examples as well as end of chapter problems. It includes coverage of catalyst characterization and its impact on kinetics and reactor modeling. Each chapter presents simple ideas and concepts which build towards more complex and realistic cases and situations. Introduces an in-depth kinetics analysis Features well developed sections on the major topics of catalysts, kinetics, reactor design, and modeling Includes a chapter that showcases a fully worked out example detailing a typical problem that is faced when performing laboratory work Offers end of chapter problems and a solutions manual for adopting professors Aimed at advanced chemical engineering undergraduates and graduate students taking chemical reaction engineering courses as well as chemical engineering professionals, this textbook provides the knowledge to tackle real problems within the industry.




Experiments in Catalytic Reaction Engineering


Book Description

The science of catalytic reaction engineering studies the catalyst and the catalytic process in the laboratory in order to predict how they will perform in production-scale reactors. Surprises are to be avoided in the scaleup of industrial processes. The laboratory results must account for flow, heat and mass transfer influences on reaction rate to be useful for scaleup. Calculated performance based on these results must also be useful to maximization of profit and safety and minimization of pollution. To this end, information on products as well as byproducts and heat produced must be generated. If a sufficiently large database of knowledge is produced, optimization studies will be possible later if economic conditions change. The field of reaction engineering required new tools. For kinetic and catalyst testing, the most successful of these tools was the internal recycle reactor. Studies in recycle reactors can be made under well-defined conditions of flow and associated transfer processes, and close to commercial operation. The recycle reactor eliminates or minimizes the effect of transfer process, and allows the remaining ones to be known. Features of this book: • Provides insight into a field that is neither well understood nor properly appreciated. • Gives a deeper understanding of reaction engineering practice. • Helps avoid frustration and disappointment in industrial research. This book is short and clear enough to assist all members of the R&D and Engineering team, whether reaction engineers, or specialists in other fields. This is critical in this new age of computation and communication, when team members must each know at least something of their colleagues' fields. Additionally, many scientists in more exploratory or fundamental fields can use recycle reactors to study basic phenomena free of transfer interactions.




Catalytic Kinetics


Book Description

Catalytic Kinetics: Chemistry and Engineering, Second Edition offers a unified view that homogeneous, heterogeneous, and enzymatic catalysis form the cornerstone of practical catalysis. The book has an integrated, cross-disciplinary approach to kinetics and transport phenomena in catalysis, but still recognizes the fundamental differences between different types of catalysis. In addition, the book focuses on a quantitative chemical understanding and links the mathematical approach to kinetics with chemistry. A diverse group of catalysts is covered, including catalysis by acids, organometallic complexes, solid inorganic materials, and enzymes, and this fully updated second edition contains a new chapter on the concepts of cascade catalysis. Finally, expanded content in this edition provides more in-depth discussion, including topics such as organocatalysis, enzymatic kinetics, nonlinear dynamics, solvent effects, nanokinetics, and kinetic isotope effects. Fully revised and expanded, providing the latest developments in catalytic kinetics Bridges the gaps that exist between hetero-, homo- and enzymatic-catalysis Provides necessary tools and new concepts for researchers already working in the field of catalytic kinetics Written by internationally-renowned experts in the field Examples and exercises following each chapter make it suitable as an advanced course book




Engineering Catalysis


Book Description

With well over 90% of all processes in the industrial chemical production being of catalytic nature, catalysis is a mature though ever interesting topic. The idea of this book is to tackle various aspects of heterogeneous catalysis from the engineering point of view and go all the way from engineering of catalysis, catalyst preparation, characterization, reaction kinetics, mass transfer to catalytic reactors and the implementation of catalysts in chemical technology. Aimed for graduate students it is also a useful resource for professionals coming from the more academic side.




Catalysis


Book Description

Written by an excellent, highly experienced and motivated team of lecturers, this textbook is based on one of the most successful courses in catalysis and as such is tried-and-tested by generations of graduate and PhD students, i.e. the Catalysis-An-Integrated-Approach (CAIA) course organized by NIOK, the Dutch Catalysis research school. It covers all essential aspects of this important topic, including homogeneous, heterogeneous and biocatalysis, but also kinetics, catalyst characterization and preparation, reactor design and engineering. The perfect source of information for graduate and PhD students in chemistry and chemical engineering, as well as for scientists wanting to refresh their knowledge




Catalyst Preparation


Book Description

This text explores the optimization of catalytic materials through traditional and novel methods of catalyst preparation, characterization, and monitoring for oxides, supported metals, zeolites, and heteropolyacids. It focuses on the synthesis of bulk materials and of heterogeneous materials, particularly at the nanoscale. The final chapters examine pretreatment, drying, finishing effects, and future applications involving catalyst preparation and the technological advances necessary for continued progress. Topics also include heat and mass transfer limitations, computation methods for predicting properties, and catalyst monitoring on laboratory and industrial scales.




Basic Principles in Applied Catalysis


Book Description

Written by a team of internationally recognized experts, this book addresses the most important types of catalytic reactions and catalysts as used in industrial practice. Both applied aspects and the essential scientific principles are described. The main topics can be summarized as follows: heterogeneous, homogeneous and biocatalysis, catalyst preparation and characterization, catalytic reaction engineering and kinetics, catalyst deactivation and industrial perspective.







Kinetics of Catalytic Reactions


Book Description

Describes how to conduct kinetic experiments with heterogeneous catalysts, analyze and model the results, and characterize the catalysts Detailed analysis of mass transfer in liquid phase reactions involving porous catalysts. Important to the fine chemicals and pharmaceutical industries so it has appeal to many researchers in both industry and academia (chemical engineering and chemistry departments




Kinetics of Catalytic Reactions--Solutions Manual


Book Description

This manual of solutions to the problems in "Kinetics of Catalytic Reactions" has been prepared to assist those who use this book in a teaching function. However, these solutions should also benefit those outside the classroom who want to apply the principles and concepts that are discussed in the book. By studying and observing the approaches used in solving these problems, it is very likely that similar applications can be envisioned in different kinetic problems that the investigator might face. Thus the availability ofthese solutions is a good learning tool for everyone. Additional details and insight about the solutions provided can be obtained by reading the cited references. I have tried to eliminate all errors, both conceptual and typographical, in these solutions; however, the probability is high that I have not succeeded completely. Should any errors of commission (or omission) be found, I would greatly appreciate being informed. I can be reached at this email address: [email protected], or mail can be sent to me at: 107 Fenske Laboratory, Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802. Albert Vannice v Contents Preface v Solutions to Problems Chapter 3 - Catalyst Characterization .