Reactions and Interfacial Behaviors of the Water-Amorphous Silica System from Classical and Ab Initio Molecular Dynamics Simulations


Book Description

Due to the wide application of silica based systems ranging from microelectronics to nuclear waste disposal, detailed knowledge of water-silica interactions plays an important role in understanding fundamental processes, such as glass corrosion and the long term reliability of devices. In this dissertation, atomistic computer simulation methods have been used to explore and identify the mechanisms of water-silica reactions and the detailed processes that control the properties of the water-silica interfaces due to their ability to provide atomic level details of the structure and reaction pathways. The main challenges of the amorphous nature of the silica based systems and nano-porosity of the structures were overcome by a combination of simulation methodologies based on classical molecular dynamics (MD) simulations with Reactive Force Field (ReaxFF) and density functional theory (DFT) based ab initio MD simulations. Through the development of nanoporous amorphous silica structure models, the interactions between water and the complex unhydroxylated internal surfaces identified the unusual stability of strained siloxane bonds in high energy ring structure defects, as well as the hydroxylation reaction kinetics, which suggests the difficulty in using DFT methods to simulate Si-O bond breakage with reasonable efficiency. Another important problem addressed is the development of silica gel structures and their interfaces, which is considered to control the long term residual dissolution rate in borosilicate glasses. Through application of the ReaxFF classical MD potential, silica gel structures which mimic the development of interfacial layers during silica dissolution were created A structural model, consisting of dense silica, silica gel, and bulk water, and the related interfaces was generated, to represent the dissolution gel structure. High temperature evolution of the silica-gel-water (SGW) structure was performed through classical MD simulation of the system, and growth of the gel into the water region occurred, as well as the formation of intermediate range structural features of dense silica. Additionally, hydroxylated silica monomers (SiO4H4) and longer polymerized silica chains were formed in the water region, indicating that glass dissolution is occurring, even at short time frames. The creation of the SGW model provides a framework for a method of identifying how interfacial structures which develop at glass-water interfaces can be incorporated into atomistic models for additional analysis of the dissolution of silicates in water.




Surface and Interface Science, Volumes 7 and 8


Book Description

In ten volumes, this unique handbook covers all fundamental aspects of surface and interface science and offers a comprehensive overview of this research area for scientists working in the field, as well as an introduction for newcomers. Volume 1: Concepts and Methods Volume 2: Properties of Elemental Surfaces Volume 3: Properties of Composite Surfaces: Alloys, Compounds, Semiconductors Volume 4: Solid-Solid Interfaces and Thin Films Volume 5: Solid-Gas Interfaces I Volume 6: Solid-Gas Interfaces II Volume 7: Liquid and Biological Interfaces Volume 8: Interfacial Electrochemistry Volume 9: Applications of Surface Science I Volume 10: Applications of Surface Science II Content of Volumes 7 & 8: * Probing Liquid/Solid Interfaces at the Molecular Level * Structure and Dynamics of Liquid-Solid Interfaces * Adsorption of Biomolecules * Liquid Surfaces * Surfaces of Ionic Liquids * Superhydrophobicity * Cell Penetrating Peptides Targeting and Distorting Biological Membranes * Theory of Solid/Electrolyte Interfaces * Metal/Electrolyte Interfaces: An Atomic View * X-Ray Spectroscopy at Electro-Catalytic Interfaces * Fundamental Aspects of Electro-Catalysis * Non-Linear Processes at Solid/Liquid Interfaces




Handbook of Adhesion Technology


Book Description

Adhesives have been used for thousands of years, but until 100 years ago, the vast majority was from natural products such as bones, skins, fish, milk, and plants. Since about 1900, adhesives based on synthetic polymers have been introduced, and today, there are many industrial uses of adhesives and sealants. It is difficult to imagine a product—in the home, in industry, in transportation, or anywhere else for that matter—that does not use adhesives or sealants in some manner. The Handbook of Adhesion Technology is intended to be the definitive reference in the field of adhesion. Essential information is provided for all those concerned with the adhesion phenomenon. Adhesion is a phenomenon of interest in diverse scientific disciplines and of importance in a wide range of technologies. Therefore, this handbook includes the background science (physics, chemistry and materials science), engineering aspects of adhesion and industry specific applications. It is arranged in a user-friendly format with ten main sections: theory of adhesion, surface treatments, adhesive and sealant materials, testing of adhesive properties, joint design, durability, manufacture, quality control, applications and emerging areas. Each section contains about five chapters written by internationally renowned authors who are authorities in their fields. This book is intended to be a reference for people needing a quick, but authoritative, description of topics in the field of adhesion and the practical use of adhesives and sealants. Scientists and engineers of many different backgrounds who need to have an understanding of various aspects of adhesion technology will find it highly valuable. These will include those working in research or design, as well as others involved with marketing services. Graduate students in materials, processes and manufacturing will also want to consult it.




Computational Modeling of Inorganic Nanomaterials


Book Description

Computational Modeling of Inorganic Nanomaterials provides an accessible, unified introduction to a variety of methods for modeling inorganic materials as their dimensions approach the nanoscale. With contributions from a team of international experts, the book guides readers on choosing the most appropriate models and methods for studying the stru




Specific Ion Effects


Book Description

Specific ion effects are important in numerous fields of science and technology. This book summarizes the main ideas that came up over the years. It presents the efforts of theoreticians and supports it by the experimental results stemming from various techniques.







Ab Initio Molecular Dynamics


Book Description

Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.




Classical And Quantum Dynamics In Condensed Phase Simulations: Proceedings Of The International School Of Physics


Book Description

The school held at Villa Marigola, Lerici, Italy, in July 1997 was very much an educational experiment aimed not just at teaching a new generation of students the latest developments in computer simulation methods and theory, but also at bringing together researchers from the condensed matter computer simulation community, the biophysical chemistry community and the quantum dynamics community to confront the shared problem: the development of methods to treat the dynamics of quantum condensed phase systems.This volume collects the lectures delivered there. Due to the focus of the school, the contributions divide along natural lines into two broad groups: (1) the most sophisticated forms of the art of computer simulation, including biased phase space sampling schemes, methods which address the multiplicity of time scales in condensed phase problems, and static equilibrium methods for treating quantum systems; (2) the contributions on quantum dynamics, including methods for mixing quantum and classical dynamics in condensed phase simulations and methods capable of treating all degrees of freedom quantum-mechanically.




Adsorption on Silica Surfaces


Book Description

"Progresses from theoretical issues to applications. Contains a historical overview, in-depth considerations of various scenarios of silica adsorption, and results from the latest research. Invaluable for broad coverage of the expanding field of silica research."




Introduction To Carbon Capture And Sequestration


Book Description

The aim of the book is to provide an understanding of the current science underpinning Carbon Capture and Sequestration (CCS) and to provide students and interested researchers with sufficient background on the basics of Chemical Engineering, Material Science, and Geology that they can understand the current state of the art of the research in the field of CCS. In addition, the book provides a comprehensive discussion of the impact of CCS on the energy landscape, society, and climate as these topics govern the success of the science being done in this field.The book is aimed at undergraduate students, graduate students, scientists, and professionals who would like to gain a broad multidisciplinary view of the research that is being carried out to solve one of greatest challenges of our generation.