Reactive and Membrane-Assisted Separations


Book Description

Process intensification aims for increasing efficiency and sustainability of (bio-)chemical production processes. This book presents strategies for improving fluid separation such as reactive distillation, reactive absorption and membrane assisted separations. The authors discuss computer simulation, model development, methodological approaches for synthesis and the design and scale-up of final industrial processes.




Reactive and Membrane-Assisted Separations


Book Description

Process intensification aims for increasing efficiency and sustainability of (bio-)chemical production processes. This book presents strategies for improving fluid separation such as reactive distillation, reactive absorption and membrane assisted separations. The authors discuss computer simulation, model development, methodological approaches for synthesis and the design and scale-up of the final industrial processes.




Reactive and Membrane-Assisted Separations


Book Description

Process intensification aims for increasing efficiency and sustainability of (bio- )chemical production processes. This book presents strategies for improving fluid separation such as reactive distillation, reactive absorption and membrane assisted separations. The authors discuss computer simulation, model development, methodological approaches for synthesis and the design and scale-up of the final industrial processes.




Process Intensification


Book Description

Process intensifi cation aims for increasing effi ciency and sustainability of (bio-)chemical production processes. This book presents strategies for the intensifi cation of fluid separation processes such as reactive distillation, reactive absorption and membrane assisted separations. The authors discuss theoretical fundamentals, model development, methods for synthesis and the design as well as scale-up and industrial process applications.




Reactive Separation Processes


Book Description

This book summarizes the available information in six known areas of reactive separation: reaction/distillation, reaction/extraction, reaction/absorption, reaction/adsorption, reaction/membrane, and reaction/crystallization.




Reactive Separation for Process Intensification and Sustainability


Book Description

This book describes, analyses and discusses the main principles, phenomena and design strategies of reactive separation processes with an emphasis on the intensification as a basis of the sustainability. Different reactive separation processes are explained in detail to show the phenomena and with the purpose of understanding when their use allows advantages based on the output results. Case examples are analysed and the perspective of these processes in the future is discussed. The overall sustainability of reactive separation processes in the industry is also explained separately.







Synthesis and Operability Strategies for Computer-Aided Modular Process Intensification


Book Description

Synthesis and Operability Strategies for Computer-Aided Modular Process intensification presents state-of-the-art methodological developments and real-world applications for computer-aided process modeling, optimization and control, with a particular interest on process intensification systems. Each chapter consists of basic principles, model formulation, solution algorithm, and step-by-step implementation guidance on key procedures. Sections cover an overview on the current status of process intensification technologies, including challenges and opportunities, detail process synthesis, design and optimization, the operation of intensified processes under uncertainty, and the integration of design, operability and control. Advanced operability analysis, inherent safety analysis, and model-based control strategies developed in the community of process systems engineering are also introduced to assess process operational performance at the early design stage. Includes a survey of recent advances in modeling, optimization and control of process intensification systems Presents a modular synthesis approach for process design, integration and material selection in intensified process systems Provides advanced process operability, inherent safety tactics, and model-based control analysis approaches for the evaluation of process operational performance at the conceptual design stage Highlights a systematic framework for multiscale process design intensification integrated with operability and control Includes real-word application examples on intensified reaction and/or separation systems with targeted cost, energy and sustainability improvements




Membrane Separation Processes


Book Description

Membrane Separation Processes: Theories, Problems, and Solutions provides graduate and senior undergraduate students and membrane researchers in academia and industry with the fundamental knowledge on the topic by explaining the underlying theory that is indispensable for solving problems that occur in membrane separation processes. All major membrane processes are discussed, and an economic analysis is provided. Separation processes such as RO, UF, MF, RO, PRO and MD are thoroughly discussed. During the last two decades, the scope of the R&D of membrane separation processes has been significantly broadened. Other sections in the book cover membrane contactor and membrane adsorption. In addition, hybrid systems in which two or more membrane systems are combined are now being investigated for large-scale applications. Written by renowned experts with extensive experience with industry, education and R&D who have complementary expertise In-depth coverage of the most important conventional and emerging membrane processes Provides fundamental membrane theories for solving problems in separation processes without using complicated software




Intensification of Biobased Processes


Book Description

In recent years bioprocessing has increased in popularity and importance, however, bioprocessing still poses various important techno-economic and environmental challenges, such as product yields, excessive energy consumption for separations in highly watery systems, batch operation or the downstream processing bottlenecks in the production of biopharmaceutical products. Many of those challenges can be addressed by application of different process intensification technologies discussed in the present book. The first book dedicated entirely to this area, Intensification of Biobased Processes provides a comprehensive overview of modern process intensification technologies used in bioprocessing. The book focusses on four different categories of biobased products: bio-fuels and platform chemicals; cosmeceuticals; food products; and polymers and advanced materials. It will cover various intensification aspects of the processes concerned, including (bio)reactor intensification; intensification of separation, recovery and formulation operations; and process integration. This is an invaluable source of information for researchers and industrialists working in chemical engineering, biotechnology and process engineering.