Reactive Batch Distillation of Ethyl Acetate


Book Description

Reactive distillation is a multi-functional unit operation combining chemical reactor and distillation column in a single unit. Fatty acid esterification is increasingly realized as a reactive distillation (RD) process because of its formation being affected by the chemical equilibrium. In this work, a detailed mathematical dynamic rate-based model of reactive batch distillation column is formulated for ethyl acetate synthesis and presented as a system of differential and algebraic equations (DAEs). The developed model is then solved to obtain the detailed column dynamics. The simulation results provide the dynamics of reboiler and distillate compositions, ethyl acetate purity in the accumulated distillate and conversion of the reactants. These simulation results are compared with experimental data, and it indicates a very good agreement. The developed model is then applied to formulate dynamic optimization problem in order to derive the optimum operating policy, reflux profile.







Batch Distillation: Design And Operation


Book Description

The batch distillation process has existed for many centuries. It is perhaps the oldest technology for separating or purifying liquid mixtures and is the most frequently used separation method in batch processes. In the last 25 years, with continuous development of faster computers and sophisticated numerical methods, there have been many published works using detailed mathematical models with rigorous physical property calculations and advanced optimisation techniques to address several important issues, such as selection of column configurations, design, operation, off-cut recycling, use of batch distillation in reactive and extractive modes, etc.Batch Distillation: Design and Operation presents excellent, important contributions of many researchers from around the globe, including those of the author and his co-workers./a




Simulation, Optimization and Control of Reactive Batch Distillation Column - for Ethyl Acetate Synthesis


Book Description

The control analysis results fairly conclude that the controllability of reactive batch distillation column depends strongly on the operating conditions, mainly the dependency of overall process feasibility on the combination of tuning parameters, reflux ratio and batch time.




Simulation of Ethyl Acetate Synthesis Via Reactive Distillation


Book Description

Ethyl acetate (EtAc) is mainly used as solvent in paints, adhesives and coatings, eliminating the use of aromatic compounds. Reactive distillation is a type of process intensification in which the separation and reaction is combined in one vessel. In this work, reactive distillation (RD) process for EtAc was implemented using process simulator Aspen HYSYS by applying the data obtained from the bibliography. A sensitive analysis was performed to determine the effects of key design and operating variables on column performance and, subsequently, an optimal column configuration was obtained.




Reactive Distillation


Book Description

Neural Networks is an integral part in machine learning and a known tool for controlling nonlinear processes. The area is under rapid development and provides a tool for modelling and controlling of advanced processes. This book provides a comprehensive overview for modelling, simulation, measurement and control strategies for reactive distillations using neural networks.




Study of Dynamic Behavior of Ethyl Acetate Reactive Distillation Column Using ASPEN PLUS.


Book Description

Reactive distillation (RD), the combination of chemical reaction and distillation in a single unit operation, has proven to be advantageous over conventional process systems consisting of separate reactor and distillation units. But the dynamic behavior of process is difficult to study. In this thesis, a reactive distillation column for ethyl acetate production has been created in ASPEN user interface. Steady state simulations are done in ASPEN user interface and the effect of reflux ratio on the composition of ethyl acetate in the distillate is studied. In ASPEN DYNAMICS the composition control studies for ethyl acetate purity has been studied both in the distillate and in the bottoms.




21st European Symposium on Computer Aided Process Engineering


Book Description

The European Symposium on Computer Aided Process Engineering (ESCAPE) series presents the latest innovations and achievements of leading professionals from the industrial and academic communities. The ESCAPE series serves as a forum for engineers, scientists, researchers, managers and students to present and discuss progress being made in the area of computer aided process engineering (CAPE). European industries large and small are bringing innovations into our lives, whether in the form of new technologies to address environmental problems, new products to make our homes more comfortable and energy efficient or new therapies to improve the health and well being of European citizens. Moreover, the European Industry needs to undertake research and technological initiatives in response to humanity's "Grand Challenges," described in the declaration of Lund, namely, Global Warming, Tightening Supplies of Energy, Water and Food, Ageing Societies, Public Health, Pandemics and Security. Thus, the Technical Theme of ESCAPE 21 will be "Process Systems Approaches for Addressing Grand Challenges in Energy, Environment, Health, Bioprocessing & Nanotechnologies."




Frontiers on Separation Science and Tech. .


Book Description

This book presents the latest achievements of separation science and technology. It highlights the application of separation with regard to problems of current interest, such as the protection of the environment and the development of emerging technology, including chemical engineering, biotechnology, renewable energy sources and recycling of materials.




Separation of a highly nonideal mixture for solvent recovery


Book Description

Inhaltsangabe:Abstract: The separation of complex nonideal mixtures is a common problem in the process industries. The solvent recovery is an important task for chemical engineers to minimize burden upon the environment due to exhaustive use of solvents. The recovery of the individual components is complicated by the highly nonideal features of these mixtures. The separation of such highly nonideal mixtures can be limited by the presence of azeotropes, which can create distillation boundaries. These distillation boundaries are forming distillation regions which are difficult to overcome with the standard rectification. Distillation systems for these highly nonideal azeotropic mixtures are particularly difficult to design and to operate in an efficient way. In printing companies often four component mixtures of ethanol, ethyl acetate, isopropyl acetate, and water arise as waste. A separation scheme of multicomponent azeotropic distillation is developed and successfully used for a highly nonideal quaternary mixture. The composition of the mixture in mass percent is ethanol 30%, water 20%, ethyl acetate 25% and isopropyl acetate with 20%. The rest of the mixture (5%) consists of n-propane, isopropane, cyclohexane, and etoxypropane. For the further investigation just the quaternary mixture is examined. Generally, every component should be recovered as pure as possible from the mixture. In the mixture namely five binary and two ternary azeotropes are formed by the components. Based on the synthesis procedure proposed by Rev et al. and Mizsey et al. a new separation technology is developed followed up the vapor-liquid-liquid equilibrium behavior of the mixture. They have recommended a general framework for designing feasible schemes of multicomponent azeotropic distillation. This procedure recommends to study in detail the vapor-liquid-liquid equilibrium data to explore immiscibility regions, azeotropic points, and separatrices for ternary and quaternary regions. On the behalf of the VLLE data the set of feasible separation structures is explored. This procedure is followed and a new separation structure is developed and tested experimentally. First, the quaternary mixture is separated into two ternary mixtures by distillation. The two ternary mixtures containing ethyl acetate, ethanol, water and isopropyl acetate, ethanol, water, respectively. Due to the analogous behavior of the two ternary mixtures similar separation cycles can be designed. The two [...]