Reactive Oxygen Species in Plant Biology


Book Description

This book highlights the latest advances made in the niche area of Reactive Oxygen Species and Redox processes in plants. It offers a valuable guide for researchers and students alike, providing insights into sensing, detox scavenging, the role in oxidative deterioration, and signaling associated with redox-regulatory processes in plants. The book also dramatically demonstrates how these amazingly resourceful molecular species and radicals are poised at the core of a sophisticated network of signaling pathways, and act as vital regulators of plants’ cell physiology and cellular responses to the environment. The molecular language associated with ROS-mediated signal transduction, which produces modulations in gene expression that determine plants’ stress acclamatory performance, is also discussed. The book subsequently provides information on current trends in redox proteomics and genomics, which include efforts to gain a fuller understanding of these redox players’ role in cellular processes, and to further the application of this knowledge to technology and agriculture. Given its scope and format, the book offers a valuable asset for students of Plant Sciences, Agriculture, and Molecular Biology, as well as readers engaged in research on and teaching ROS Biology.




Reactive Oxygen Species in Plants


Book Description

Describes the basics of ROS metabolism in plants and examines the broad range of ROS signaling mechanisms New discoveries about the effects of reactive oxygen species (ROS) on plants have turned ROS from being considered a bane into a boon, because their roles have been discovered in many plant developmental processes as signaling molecules. This comprehensive book teaches about the role of ROS metabolism in plants and how they affect various developmental processes. It also discusses in detail the advancements made in understanding the ROS signaling. Reactive Oxygen Species in Plants: Boon Or Bane - Revisiting the Role of ROS begins by presenting the basic introduction to ROS and deciphers the detailed knowledge in ROS research. It then examines the broad range of ROS signaling mechanisms as well as how they may be beneficial for plants and human beings. This book also describes both the bane and boon aspects of ROS with their impact on plants, and how the recent revelations have compelled us to rethink ROS turning from stressors to plant regulators. ● Compiles, for the first time, the wholesome knowledge in ROS research and their cellular signaling ● Includes new discoveries and in-depth discussions about the advancements made in the field ● Discusses reactive oxygen species which are involved in a broad range of biological processes Reactive Oxygen Species in Plants: Boon Or Bane - Revisiting the Role of ROS will help scientists to utilize the functions of ROS signaling for plants and also enable readers to gain a deeper knowledge of ROS research and signaling. It is highly recommended for researchers, scientists, and academicians in plant science as well for advanced undergraduate and postgraduate students.




Oxidative Stress in Plants


Book Description

Plants depend on physiological mechanisms to combat adverse environmental conditions, such as pathogen attack, wounding, drought, cold, freezing, salt, UV, intense light, heavy metals and SO2. Many of these cause excess production of active oxygen species in plant cells. Plants have evolved complex defense systems against such oxidative stress. The




Plant Abiotic Stress Tolerance


Book Description

Plants have to manage a series of environmental stresses throughout their entire lifespan. Among these, abiotic stress is the most detrimental; one that is responsible for nearly 50% of crop yield reduction and appears to be a potential threat to global food security in coming decades. Plant growth and development reduces drastically due to adverse effects of abiotic stresses. It has been estimated that crop can exhibit only 30% of their genetic potentiality under abiotic stress condition. So, this is a fundamental need to understand the stress responses to facilitate breeders to develop stress resistant and stress tolerant cultivars along with good management practices to withstand abiotic stresses. Also, a holistic approach to understanding the molecular and biochemical interactions of plants is important to implement the knowledge of resistance mechanisms under abiotic stresses. Agronomic practices like selecting cultivars that is tolerant to wide range of climatic condition, planting date, irrigation scheduling, fertilizer management could be some of the effective short-term adaptive tools to fight against abiotic stresses. In addition, “system biology” and “omics approaches” in recent studies offer a long-term opportunity at the molecular level in dealing with abiotic stresses. The genetic approach, for example, selection and identification of major conditioning genes by linkage mapping and quantitative trait loci (QTL), production of mutant genes and transgenic introduction of novel genes, has imparted some tolerant characteristics in crop varieties from their wild ancestors. Recently research has revealed the interactions between micro-RNAs (miRNAs) and plant stress responses exposed to salinity, freezing stress and dehydration. Accordingly transgenic approaches to generate stress-tolerant plant are one of the most interesting researches to date. This book presents the recent development of agronomic and molecular approaches in conferring plant abiotic stress tolerance in an organized way. The present volume will be of great interest among research students and teaching community, and can also be used as reference material by professional researchers.




Redox Homeostasis in Plants


Book Description

This book summarizes the latest research results on the role of reactive oxygen species (ROS) in plants, particularly in many abiotic stresses, and their regulation. Redox homeostasis refers to maintaining a balance of oxidised and reduced state of biomolecules in a biological system for all-round sustenance. In a living system, redox reactions contribute to the generation of reactive oxygen species (ROS), which act as signalling molecules for developmental as well as stress-response processes in plants. It is presumed that, being sessile and an aerobe requiring oxygen for mitochondrial energy production, as well as producing oxygen during photosynthesis, the redox homeostasis process is more complex and regulated in plants than in animals. Any imbalance in the homeostasis is mainly compensated for by the production of various ROS molecules, which, though they can cause severe oxidative damage in excess, can also ideally act as signalling molecules.




Regulation of Photosynthesis


Book Description

This book covers the expression of photosynthesis related genes including regulation both at transcriptional and translational levels. It reviews biogenesis, turnover, and senescence of thylakoid pigment protein complexes and highlights some crucial regulatory steps in carbon metabolism.




Plant Signaling Molecules


Book Description

Plant Signaling Molecule: Role and Regulation under Stressful Environments explores tolerance mechanisms mediated by signaling molecules in plants for achieving sustainability under changing environmental conditions. Including a wide range of potential molecules, from primary to secondary metabolites, the book presents the status and future prospects of the role and regulation of signaling molecules at physiological, biochemical, molecular and structural level under abiotic stress tolerance. This book is designed to enhance the mechanistic understanding of signaling molecules and will be an important resource for plant biologists in developing stress tolerant crops to achieve sustainability under changing environmental conditions. - Focuses on plant biology under stress conditions - Provides a compendium of knowledge related to plant adaptation, physiology, biochemistry and molecular responses - Identifies treatments that enhance plant tolerance to abiotic stresses - Illustrates specific physiological pathways that are considered key points for plant adaptation or tolerance to abiotic stresses




Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress


Book Description

The present edited book is an attempt to update the state of art of the knowledge on metabolism of ROS and antioxidants and their relationship in plant adaptation to abiotic stresses involving physiological, biochemical and molecular processes. The chapters are much focused on the current climate issues and how ROS metabolism can manipulate with antioxidant system to accelerate detoxification mechanism. It will enhance the mechanistic understanding on ROS and antioxidants system and will pave the path for agricultural scientists in developing tolerant crops to achieve sustainability under the changing environmental conditions. The increase in abiotic stress factors has become a major threat to sustainability of crop production. This situation has led to think ways which can help to come out with potential measures; for which it is necessary to understand the influence of abiotic stress factors on crops performance and the mechanisms by which these factors impact plants. It has now become evident that abiotic stress impacts negatively on plant growth and development at every stage of plant’s life. Plants adapt to the changing environment with the adjustment at physiological, biochemical and molecular levels. The possible mechanisms involved in the negative effects of abiotic stress factors are excess production of reactive oxygen species (ROS). They alter physiological and molecular mechanisms leading to poor performance of plants. Plants however, are able to cope with these adverse effects by inducing antioxidant systems as the priority. Nevertheless, the dual role of ROS has now been ascertained which provides an evidence for regulation of plant metabolism positively on a concentration-dependent manner. Under conditions of high ROS production, the antioxidant system plays a major role in diminishing the effects of ROS. Thus, ROS production and antioxidant system are interwoven with abiotic stress conditions. The antioxidants have the capacity to hold the stability in metabolism in order to avoid disruption due to environmental disturbances.




Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective


Book Description

The natural environment for plants is composed of a complex set of abiotic and biotic stresses; plant responses to these stresses are equally complex. Systems biology allows us to identify regulatory hubs in complex networks. It also examines the molecular “parts” (transcripts, proteins and metabolites) of an organism and attempts to combine them into functional networks or models that effectively describe and predict the dynamic activities of that organism in different environments. This book focuses on research advances regarding plant responses to abiotic stresses, from the physiological level to the molecular level. It highlights new insights gained from the integration of omics datasets and identifies remaining gaps in our knowledge, outlining additional focus areas for future crop improvement research. Plants have evolved a wide range of mechanisms for coping with various abiotic stresses. In many crop plants, the molecular mechanisms involved in a single type of stress tolerance have since been identified; however, in order to arrive at a holistic understanding of major and common events concerning abiotic stresses, the signaling pathways involved must also be elucidated. To date several molecules, like transcription factors and kinases, have been identified as promising candidates that are involved in crosstalk between stress signalling pathways. However, there is a need to better understand the tolerance mechanisms for different abiotic stresses by thoroughly grasping the signalling and sensing mechanisms involved. Accordingly, this book covers a range of topics, including the impacts of different abiotic stresses on plants, the molecular mechanisms leading to tolerance for different abiotic stresses, signaling cascades revealing cross-talk among various abiotic stresses, and elucidation of major candidate molecules that may provide abiotic stress tolerance in plants.




Abiotic Stress Adaptation in Plants


Book Description

Environmental insults such as extremes of temperature, extremes of water status as well as deteriorating soil conditions pose major threats to agriculture and food security. Employing contemporary tools and techniques from all branches of science, attempts are being made worldwide to understand how plants respond to abiotic stresses with the aim to help manipulate plant performance that will be better suited to withstand these stresses. This book on abiotic stress attempts to search for possible answers to several basic questions related to plant responses towards abiotic stresses. Presented in this book is a holistic view of the general principles of stress perception, signal transduction and regulation of gene expression. Further, chapters analyze not only model systems but extrapolate interpretations obtained from models to crops. Lastly, discusses how stress-tolerant crop or model plants have been or are being raised through plant breeding and genetic engineering approaches. Twenty three chapters, written by international authorities, integrate molecular details with overall plant structure and physiology, in a text-book style, including key references.