Real Interpolation Methods and Banach Function Spaces
Author : Traian Ceaușu
Publisher :
Page : 98 pages
File Size : 50,87 MB
Release : 1988
Category : Banach spaces
ISBN :
Author : Traian Ceaușu
Publisher :
Page : 98 pages
File Size : 50,87 MB
Release : 1988
Category : Banach spaces
ISBN :
Author : J. Bergh
Publisher : Springer Science & Business Media
Page : 218 pages
File Size : 18,25 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 3642664512
The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.
Author : Colin Bennett
Publisher : Academic Press
Page : 489 pages
File Size : 42,86 MB
Release : 1988-04-01
Category : Mathematics
ISBN : 0080874487
This book presents interpolation theory from its classical roots beginning with Banach function spaces and equimeasurable rearrangements of functions, providing a thorough introduction to the theory of rearrangement-invariant Banach function spaces. At the same time, however, it clearly shows how the theory should be generalized in order to accommodate the more recent and powerful applications. Lebesgue, Lorentz, Zygmund, and Orlicz spaces receive detailed treatment, as do the classical interpolation theorems and their applications in harmonic analysis.The text includes a wide range of techniques and applications, and will serve as an amenable introduction and useful reference to the modern theory of interpolation of operators.
Author :
Publisher : Elsevier
Page : 735 pages
File Size : 38,49 MB
Release : 1991-03-18
Category : Mathematics
ISBN : 0080887104
The theory of interpolation spaces has its origin in the classical work of Riesz and Marcinkiewicz but had its first flowering in the years around 1960 with the pioneering work of Aronszajn, Calderón, Gagliardo, Krein, Lions and a few others. It is interesting to note that what originally triggered off this avalanche were concrete problems in the theory of elliptic boundary value problems related to the scale of Sobolev spaces. Later on, applications were found in many other areas of mathematics: harmonic analysis, approximation theory, theoretical numerical analysis, geometry of Banach spaces, nonlinear functional analysis, etc. Besides this the theory has a considerable internal beauty and must by now be regarded as an independent branch of analysis, with its own problems and methods. Further development in the 1970s and 1980s included the solution by the authors of this book of one of the outstanding questions in the theory of the real method, the K-divisibility problem. In a way, this book harvests the results of that solution, as well as drawing heavily on a classic paper by Aronszajn and Gagliardo, which appeared in 1965 but whose real importance was not realized until a decade later. This includes a systematic use of the language, if not the theory, of categories. In this way the book also opens up many new vistas which still have to be explored. This volume is the first of three planned books. Volume II will deal with the complex method, while Volume III will deal with applications.
Author : Hans Triebel
Publisher : Springer Science & Business Media
Page : 433 pages
File Size : 42,66 MB
Release : 2006-09-10
Category : Mathematics
ISBN : 3764375825
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.
Author : Michael Cwikel
Publisher : Walter de Gruyter
Page : 473 pages
File Size : 28,52 MB
Release : 2008-08-22
Category : Mathematics
ISBN : 3110198053
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.
Author : David Eric Edmunds
Publisher : CRC Press
Page : 296 pages
File Size : 45,74 MB
Release : 2000
Category : Mathematics
ISBN : 9780849309380
Developed from the proceedings an international conference held in 1997, Function Spaces and Applications presents the work of leading mathematicians in the vital and rapidly growing field of functional analysis.
Author : Henryk Hudzik
Publisher : CRC Press
Page : 538 pages
File Size : 27,70 MB
Release : 2000-07-18
Category : Mathematics
ISBN : 9780824704193
This volume compiles research results from the fifth Function Spaces International Conference, held in Poznan, Poland. It presents key advances, modern applications and analyses of function spaces and contains two special sections recognizing the contributions and influence of Wladyslaw Orlicz and Genadil Lozanowskii.
Author : William B. Johnson
Publisher : Elsevier
Page : 880 pages
File Size : 10,71 MB
Release : 2001
Category : Banach spaces
ISBN : 9780444513052
The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Author : P.L. Butzer
Publisher : Birkhäuser
Page : 461 pages
File Size : 47,18 MB
Release : 2013-03-07
Category : Mathematics
ISBN : 3034893698
These Proceedings form a record of the lectures presented at the interna tional Conference on Functional Analysis and Approximation held at the Ober wolfach Mathematical Research Institute, August 9-16, 1980. They include 33 of the 38 invited conference papers, as well as three papers subsequently submitted in writing. Further, there is a report devoted to new and unsolved problems, based on two special sessions of the conference. The present volume is the sixth Oberwolfach Conference in Birkhauser's ISNM series to be edited at Aachen *. It is once again devoted to more significant results obtained in the wide areas of approximation theory, harmonic analysis, functional analysis, and operator theory during the past three years. Many of the papers solicited not only outline fundamental advances in their fields but also focus on interconnections between the various research areas. The papers in the present volume have been grouped into nine chapters. Chapter I, on operator theory, deals with maps on positive semidefinite opera tors, spectral bounds of semigroup operators, evolution equations of diffusion type, the spectral theory of propagators, and generalized inverses. Chapter II, on functional analysis, contains papers on modular approximation, interpolation spaces, and unconditional bases.