Real, Mechanical, Experimental


Book Description

This original work contains the first detailed account of the natural philosophy of Robert Hooke (1635-1703), leading figure of the early Royal Society. From celestial mechanics to microscopy, from optics to geology and biology, Hooke’s contributions to the Scientific Revolution proved decisive. Focusing separately on partial aspects of Hooke’s works, scholars have hitherto failed to see the unifying idea of the natural philosophy underlying them. Some of his unpublished papers have passed almost unnoticed. Hooke pursued the foundation of a real, mechanical and experimental philosophy, and this book is an attempt to reconstruct it. The book includes a selection of Hooke's unpublished papers. Readers will discover a study of the new science through the works of one of the most known protagonists. Challenging the current views on the scientific life of restoration England, this book sheds new light on the circulation of Baconian ideals and the mechanical philosophy in the early Royal Society. This book is a must-read to anybody interested in Hooke, early modern science or Restoration history.




Real, Mechanical, Experimental


Book Description

This original work contains the first detailed account of the natural philosophy of Robert Hooke (1635-1703), leading figure of the early Royal Society. From celestial mechanics to microscopy, from optics to geology and biology, Hooke's contributions to the Scientific Revolution proved decisive. Focusing separately on partial aspects of Hooke's works, scholars have hitherto failed to see the unifying idea of the natural philosophy underlying them. Some of his unpublished papers have passed almost unnoticed. Hooke pursued the foundation of a real, mechanical and experimental philosophy, and this book is an attempt to reconstruct it. The book includes a selection of Hooke's unpublished papers. Readers will discover a study of the new science through the works of one of the most known protagonists. Challenging the current views on the scientific life of restoration England, this book sheds new light on the circulation of Baconian ideals and the mechanical philosophy in the early Royal Society. This book is a must-read to anybody interested in Hooke, early modern science or Restoration history.




The Old and New...


Book Description

The field of Experimental Mechanics has evolved substantially over the past 100 years. In the early years, the field was primarily comprised of applied physicists, civil engineers, railroad engineers, and mechanical engineers. The field defined itself by those who invented, developed, and refined experimental tools and techniques, based on the latest technologies available, to better understand the fundamental mechanics of materials and structures used to design many aspects of our everyday life. What the early experimental mechanician measured, observed, and evaluated were things like stress, strain, fracture, and fatigue, to name a few, which remain fundamental to the field today. This book guides you through a chronology of the formation of the Society for Experimental Mechanics, and its ensuing evolution. The Society was founded in 1935 by a very small group of individuals that understood the value of creating a common forum for people working in the field of Applied Mechanics of Solids, where extensive theoretical developments needed the input of experimental validation. A community of individuals who—through research, applications, sharp discussion of ideas—could fulfill the needs of a nation rapidly evolving in the technological field. The founders defined, influenced, and grew the field of what we now call Experimental Mechanics. Written as a narrative, the author describes, based on input from numerous individuals and personal experiences, the evolution of the New England Photoelasticity Conference to what we know today as the Society for Experimental Mechanics (SEM). The narrative is the author's perspective that invites members of the Society to contribute to the story by adding names of individuals, institutions, and technologies that have defined the Society over the past 75 years. Many of the key individuals who greatly influenced the advancement of the field of Experimental Mechanics are mentioned. These individuals are, in many ways, the founders of the field who have written textbooks, brought their teaching leadership and experiences to the classroom, worked on the Apollo project, and invented testing, evaluation, and measurement equipment that have shaped the fields of engineering. SEM's international membership is highly represented by those in academia, as you will read, although there has always been a powerful balance and contribution from industry and research organizations across the globe. The role of the experimental mechanician is defined, in many ways, through the individual legacies shared in the following pages....legacies that define the past and create the foundation for what is now and what is to come.




Recent Progress In Controlling Chaos


Book Description

This review volume consists an indispensable collection of research papers chronicling the recent progress in controlling chaos. Here, new theoretical ideas, as experimental implementations of controlling chaos, are included, while the applications contained in this volume can be referred to as turbulent magnetized plasmas, chaotic neural networks, modeling city traffic and models of interest in celestial mechanics.Recent Progress in Controlling Chaos provides an excellent broad overview of the subject matter, and will be especially useful for graduate students, researchers and scientists working in the areas of nonlinear dynamics, chaos and complex systems. The authors, world-renowned scientists and prominent experts in the field of controlling chaos, will offer readers through their research works, a fascinating insight into the state-of-the-art technology used in the progress in key techniques and concepts in the field of control.




Virtual Experiments in Mechanical Vibrations


Book Description

VIRTUAL EXPERIMENTS in MECHANICAL VIBRATIONS The first book of its kind to explain fundamental concepts in both vibrations and signal processing using MATLAB virtual experiments Students and young engineers with a strong grounding in engineering theory often lack the practical skills and knowledge required to carry out experimental work in the laboratory. Fundamental and time-consuming errors can be avoided with the appropriate training and a solid understanding of basic concepts in vibrations and/or signal processing, which are critical to testing new designs. Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing is designed for readers with limited knowledge of vibrations and signal processing. The intention is to help them relate vibration theory to measurements carried out in the laboratory. With a hands-on approach that emphasizes physics rather than mathematics, this practical resource explains fundamental concepts in vibrations and signal processing. It uses the concept of a virtual experiment together with MATLAB to show how the dynamic properties of vibration isolators can be determined, how vibration absorbers can be designed, and how they perform on distributed parameter structures. Readers will find that this text: Allows the concepts of experimental work to be discussed and simulated in the classroom using a physics-based approach Presents computational virtual experiments using MATLAB examples to determine the dynamic behaviour of several common dynamic systems Explains the rationale of virtual experimentation and describes typical vibration testing setups Introduces the signal processing tools needed to determine the frequency response of a system from input and output data Includes access to a companion website containing MATLAB code Virtual Experiments in Mechanical Vibrations: Structural Dynamics and Signal Processing is a must-have resource for researchers, mechanical engineers, and advanced undergraduate and graduate students who are new to the subjects of vibrations, signal processing, and vibration testing. It is also an invaluable tool for universities where the possibilities of doing experimental work are limited.







Probabilistic Methods in the Mechanics of Solids and Structures


Book Description

The IUTAM Symposium on Probabilistic Methods in the Mechanics of Solids and Structures, dedicated to the memory of Waloddi Weibull, was held in Stockholm, Sweden, June 19-21, 1984, on the initiative of the Swedish National Committee for Mech anics and the Aeronautical Research Institute of Sweden, FFA. The purpose of the symposium was to bring together mathema ticians that develop the theory of stochastic processes and methods for reliability analysis, with engineers that apply these theories and methods to model loads, strengths and structures for the advancement of structural safety. Waloddi Weibull was a pioneer in this field with his many publi cations from the thirties until his death in 1979. He also took an active part in the formation of the International Union of Theoretical and Applied Mechanics during the forties, and subsequently initiated foundation of the Swedish National Committee for Mechanics, through which Sweden joined IUTAM as a member. 116 participants from 21 countries attended the symposium, and 55 invited papers were presented in 7 scientific sessions.







Shock Waves in Condensed Matter


Book Description

The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, the purpose of this conference was to bring together scientists and engineers studying the response of condensed matter to dynamic high pressures and temperatures. Papers covering experimental, theoretical, and numerical studies of con densed matter properties were presented. A noteworthy feature of this conference was the participation by several leading scientists engaged in static high pressure research. Donald Curran served as the Master of Ceremonies at the conference banquet, which was at tended by two hundred and seventy-five conference participants and guests including Dr. Samuel Smith, the new President of Washington State University. Dr.




Advances in Heterogeneous Material Mechanics 2008


Book Description

"The International Conference on Heterogeneous Material Mechanics (ICHMM) in Huangshan, China, June 3-8, 2008 follows the successful inaugural ICHMM held in ChongQing, China in June, 2004. The ICHMM series is the first international forum that focuses exclusively on various issues related to the behavior of heterogeneous materials in a broad sense. The object of the ICHMM is to present and publicize integrated scientific and engineering approaches to the measurement and modeling of phenomena at the interface of materials science, physics, chemistry, biology, and solid mechanics."--Preface, p. xxxix.