Weather Radar Networking


Book Description

Meteorology is by nature a multidisciplinary and transnational subject and COST cooperation has proved to be a flexible and suitable framework at European level for meteorological activities such as the standardisation of observation techniques and harmonised transmission of meteorological data. Although meteorology is not covered by a specific Community programme as such, various Community actions dealing with meteorology are now included in the EEC research programme on climatology (the "EPOCH" programme - 1989-92) of mechanisms of extreme and sudden concerning particularly the study meteorological events, in order to predict catastrophies and consequently to reduce human and material losses. In the context of COST cooperation, which is supported by the Commission of the European Communities, the COST 73 project (1986-1991) associates 16 countries in Western Europe with the aim of setting up a weather radar network providing real-time measurements of rain, snow or hail precipitations. In this project, radar data are transmitted and combined if appropriate with satellite data - in one or more "compositing centres" of the participating countries, in order to improve weather forecasting. Together with the COST 73 Management Committee, the Commission of the European Communities organized a seminar on this matter, in Brussels on 5-8 September 1989, at the half-way stage of the project.







Floods and Landslides: Integrated Risk Assessment


Book Description

A review of such natural disasters as floods and landslides, highlighting the possibility of safe and correct land planning and management by means of a global approach to territory. Since the events deriving from slope and fluvial dynamics are commonly triggered by the same factor, occur at the same time and are closely related, this book analyses floods and slope stability phenomena as different aspects of the same dynamic system: the drainage basin.




Flood Forecasting


Book Description

Flood Forecasting: A Global Perspective, Second Edition covers hydrologic forecasting systems on both a national and regional scale. This updated edition includes a breakdown by county contribution and solutions to common issues with a wide range of approaches to address the difficulties inherent in the development, implementation and operational success of national-scale flood forecasting systems. Special attention is given to recent advances in machine learning techniques for flood forecasting. Overall, the information will lead to improvements of existing systems and provide a valuable reference on the intricacies of forecast systems in different parts of the world. - Covers global and regional systems, thus allowing readers to understand the different forecasting systems and how they developed - Offers practical applications for groups trying to improve existing flood forecasting systems - Includes innovative solutions for those interested in developing new systems - Contains analytical and updated information on forecasting and monitoring systems




Distributed Hydrological Modelling


Book Description

It is the task of the engineer, as of any other professional person, to do everything that is reasonably possible to analyse the difficulties with which his or her client is confronted, and on this basis to design solutions and implement these in practice. The distributed hydrological model is, correspondingly, the means for doing everything that is reasonably possible - of mobilising as much data and testing it with as much knowledge as is economically feasible - for the purpose of analysing problems and of designing and implementing remedial measures in the case of difficulties arising within the hydrological cycle. Thus the aim of distributed hydrologic modelling is to make the fullest use of cartographic data, of geological data, of satellite data, of stream discharge measurements, of borehole data, of observations of crops and other vegetation, of historical records of floods and droughts, and indeed of everything else that has ever been recorded or remembered, and then to apply to this everything that is known about meteorology, plant physiology, soil physics, hydrogeology, sediment transport and everything else that is relevant within this context. Of course, no matter how much data we have and no matter how much we know, it will never be enough to treat some problems and some situations, but still we can aim in this way to do the best that we possibly can.




Information Technology Convergence


Book Description

Information technology and its convergence issue is emerging rapidly as an exciting new paradigm with user-centric environment to provide computing and communication services. This area will be the most comprehensive topics with various aspects of advances in information technology and its convergence services. This book covers all topics as computational science and applications, electronics engineering, manufacturing technology, services, technical skill to control the robot, automatic operation and application, simulation and testing communication and many more.




Hydrometeorology


Book Description

This second edition explores some of the latest techniques used to provide forecasts for a wide range of water-related applications in areas such as floods, droughts, water resources and environmental impacts. The practical uses can range from decisions on whether to issue a flood warning through to providing longer-term advice such as on when to plant and harvest crops or how to operate reservoirs for water supply and hydropower schemes. It provides an introduction to the topic for practitioners and researchers and useful background for courses in areas such as civil engineering, water resources, meteorology and hydrology. As in the first edition, the first section considers topics such as monitoring and forecasting techniques, demand forecasting and how forecasts are interpreted when issuing warnings or advice. Separate chapters are now included for meteorological and catchment monitoring techniques allowing a more in-depth discussion of topics such as weather radar and water quality observations. The chapters on meteorological and hydrological forecasting now include a greater emphasis on rainfall forecasting and ensemble and probabilistic techniques. Regarding the interpretation of forecasts, an updated chapter discusses topics such as approaches to issuing warnings and the use of decision support systems and risk-based techniques. Given the rapid pace of development in flash flood fore casting techniques, flash floods and slower responding riverine floods are now considered in separate chapters. This includes more detail on forecasting floods in large river basins and on methods for providing early warnings of debris flows, surface water flooding and ice jam and dam break floods. Later chapters now include more information on developing areas such as environmental modelling and seasonal flow forecasting. As before examples of operational systems are provided throughout and the extensive sets of references which were a feature of the first edition have been revised and updated. Key themes • floods • droughts • meteorological observations • catchment monitoring • meteorological forecasts • hydrological forecasts • demand forecasts • reservoirs • water resources • water quality • decision support • data assimilation • probabilistic forecasts Kevin Sene is a civil engineer and researcher with wide experience in flood risk management, water resources and hydrometeorology. He has previously published books on flood warning, forecasting and emergency response and flash floods (Springer 2008, 2013).




Frontiers in Flood Research


Book Description




Flood Warning, Forecasting and Emergency Response


Book Description

Recent flood events in Europe, the USA and elsewhere have shown the devastating impact that flooding can have on people and property. Flood warning and forecasting systems provide a well-established way to help to reduce the effects of flooding by allowing people to be evacuated from areas at risk, and for measures to be taken to reduce damage to property. With sufficient warning, temporary defences (sandbags, flood gates etc) can also be installed, and river control structures operated to mitigate the effects of flooding. Many countries and local authorities now operate some form of flood warning system, and the underlying technology requires knowledge across a range of technical areas, including rainfall and tidal detection systems, river and coastal flood forecasting models, flood warning dissemination systems, and emergency response procedures. This book provides a comprehensive account of the flood forecasting, warning and emergency response process, including techniques for predicting the development of flood events, and for issuing appropriate warnings. Related topics, such as telemetry and information systems, and flood warning economics, are also discussed. For perhaps the first time, this book brings together in a single volume the many strands of this interesting multidisciplinary topic, and will serve as a reference for researchers, policy makers and engineers. The material on meteorological, hydrological and coastal modelling and monitoring may also be of interest to a wider audience.




Rainfall-runoff Modelling In Gauged And Ungauged Catchments


Book Description

This important monograph is based on the results of a study on the identification of conceptual lumped rainfall-runoff models for gauged and ungauged catchments. The task of model identification remains difficult despite decades of research. A detailed problem analysis and an extensive review form the basis for the development of a Matlab® modelling toolkit consisting of two components: a Rainfall-Runoff Modelling Toolbox (RRMT) and a Monte Carlo Analysis Toolbox (MCAT). These are subsequently applied to study the tasks of model identification and evaluation. A novel dynamic identifiability approach has been developed for the gauged catchment case. The theory underlying the application of rainfall-runoff models for predictions in ungauged catchments is studied, problems are highlighted and promising ways to move forward are investigated. Modelling frameworks for both gauged and ungauged cases are developed. This book presents the first extensive treatment of rainfall-runoff model identification in gauged and ungauged catchments.