The Concept of Probability in the Mathematical Representation of Reality


Book Description

The first English translation of Hans Reichenbach's lucid doctoral thesis sheds new light on how Kant's Critique of Pure Reason was understood in some quarters at the time. The source of several themes in his still influential The Direction of Time, the thesis shows Reichenbach's early focus on the interdependence of physics, probability, and epistemology.




The Game of Probability


Book Description

There exist literary histories of probability and scientific histories of probability, but it has generally been thought that the two did not meet. Campe begs to differ. Mathematical probability, he argues, took over the role of the old probability of poets, orators, and logicians, albeit in scientific terms. Indeed, mathematical probability would not even have been possible without the other probability, whose roots lay in classical antiquity. The Game of Probability revisits the seventeenth and eighteenth-century "probabilistic revolution," providing a history of the relations between mathematical and rhetorical techniques, between the scientific and the aesthetic. This was a revolution that overthrew the "order of things," notably the way that science and art positioned themselves with respect to reality, and its participants included a wide variety of people from as many walks of life. Campe devotes chapters to them in turn. Focusing on the interpretation of games of chance as the model for probability and on the reinterpretation of aesthetic form as verisimilitude (a critical question for theoreticians of that new literary genre, the novel), the scope alone of Campe's book argues for probability's crucial role in the constitution of modernity.




Probing the Structure of Quantum Mechanics


Book Description

During the last decade, scientists working in quantum theory have been engaging in promising new fields such as quantum computation and quantum information processing, and have also been reflecting on the possibilities of nonlinear behavior on the quantum level. These are challenging undertakings because (1) they will result in new solutions to important technical and practical problems that were unsolvable by the classical approaches (for example, quantum computers can calculate problems that are intractable if one uses classical computers); and (2) they open up new 'hard' problems of a fundamental nature that touch the foundation of quantum theory itself (for example, the contradiction between locality and nonlinearity and the interpretation of quantum computing as a universal process).In this book, one can distinguish two main streams of research to approach the just-mentioned problem field: (1) a theoretical structural part, which concentrates on the elaboration of a nonlinear quantum mechanics and the fundamentals of quantum computation; and (2) a theoretical experimental part, which focuses on the theoretical aspects of applications that arise from new technology and novel research perspectives such as quantum optics and quantum cryptography. Particular attention is also paid to the measurement problem, the classical limit and alternative interpretations (such as the hidden measurement approach).




Truth, Possibility and Probability


Book Description

Anyone involved in the philosophy of science is naturally drawn into the study of the foundations of probability. Different interpretations of probability, based on competing philosophical ideas, lead to different statistical techniques, and frequently to mutually contradictory consequences. This unique book presents a new interpretation of probability, rooted in the traditional interpretation that was current in the 17th and 18th centuries. Mathematical models are constructed based on this interpretation, and statistical inference and decision theory are applied, including some examples in artificial intelligence, solving the main foundational problems. Nonstandard analysis is extensively developed for the construction of the models and in some of the proofs. Many nonstandard theorems are proved, some of them new, in particular, a representation theorem that asserts that any stochastic process can be approximated by a process defined over a space with equiprobable outcomes.




Interpretations of Probability


Book Description

This is the first fundamental book devoted to non-Kolmogorov probability models. It provides a mathematical theory of negative probabilities, with numerous applications to quantum physics, information theory, complexity, biology and psychology. The book also presents an interesting model of cognitive information reality with flows of information probabilities, describing the process of thinking, social, and psychological phenomena.




On Probability and Reality


Book Description




Game-Theoretic Foundations for Probability and Finance


Book Description

Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University




Epistemology and Probability


Book Description

This book offers an exploration of the relationships between epistemology and probability in the work of Niels Bohr, Werner Heisenberg, and Erwin Schro- ̈ dinger, and in quantum mechanics and in modern physics as a whole. It also considers the implications of these relationships and of quantum theory itself for our understanding of the nature of human thinking and knowledge in general, or the ‘‘epistemological lesson of quantum mechanics,’’ as Bohr liked 1 to say. These implications are radical and controversial. While they have been seen as scientifically productive and intellectually liberating to some, Bohr and Heisenberg among them, they have been troublesome to many others, such as Schro ̈ dinger and, most prominently, Albert Einstein. Einstein famously refused to believe that God would resort to playing dice or rather to playing with nature in the way quantum mechanics appeared to suggest, which is indeed quite different from playing dice. According to his later (sometime around 1953) remark, a lesser known or commented upon but arguably more important one: ‘‘That the Lord should play [dice], all right; but that He should gamble according to definite rules [i. e. , according to the rules of quantum mechanics, rather than 2 by merely throwing dice], that is beyond me. ’’ Although Einstein’s invocation of God is taken literally sometimes, he was not talking about God but about the way nature works. Bohr’s reply on an earlier occasion to Einstein’s question 1 Cf.




Exploring Probability in School


Book Description

Exploring Probability in School provides a new perspective into research on the teaching and learning of probability. It creates this perspective by recognizing and analysing the special challenges faced by teachers and learners in contemporary classrooms where probability has recently become a mainstream part of the curriculum from early childhood through high school. The authors of the book discuss the nature of probability, look at the meaning of probabilistic literacy, and examine student access to powerful ideas in probability during the elementary, middle, and high school years. Moreover, they assemble and analyse research-based pedagogical knowledge for teachers that can enhance the learning of probability throughout these school years. With the book’s rich application of probability research to classroom practice, it will not only be essential reading for researchers and graduate students involved in probability education; it will also capture the interest of educational policy makers, curriculum personnel, teacher educators, and teachers.




Probability Theory in Finance


Book Description

The use of the Black-Scholes model and formula is pervasive in financial markets. There are very few undergraduate textbooks available on the subject and, until now, almost none written by mathematicians. Based on a course given by the author, the goal of