Recent Advances on Elliptic and Parabolic Issues


Book Description

This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future. Contents: Steady Free Convection in a Bounded and Saturated Porous Medium (S Akesbi et al.); Quasilinear Parabolic Functional Evolution Equations (H Amann); A Linear Parabolic Problem with Non-Dissipative Dynamical Boundary Conditions (C Bandle & W Reichel); Remarks on Some Class of Nonlocal Elliptic Problems (M Chipot); On Some Definitions and Properties of Generalized Convex Sets Arising in the Calculus of Variations (B Dacorogna et al.); Note on the Asymptotic Behavior of Solutions to an Anisotropic Crystalline Curvature Flow (C Hirota et al.); A Reaction-Diffusion Approximation to a Cross-Diffusion System (M Iida et al.); Bifurcation Diagrams to an Elliptic Equation Involving the Critical Sobolev Exponent with the Robin Condition (Y Kabeya); Ginzburg-Landau Functional in a Thin Loop and Local Minimizers (S Kosugi & Y Morita); Singular Limit for Some Reaction Diffusion System (K Nakashima); Rayleigh-Benard Convection in a Rectangular Domain (T Ogawa & T Okuda); Some Convergence Results for Elliptic Problems with Periodic Data (Y Xie); On Global Unbounded Solutions for a Semilinear Parabolic Equation (E Yanagida). Key Features An accessible presentation of the latest, cutting-edge topics in partial differential equations Written by leading scholars in related fields Readership: Graduate students and researchers in partial differential equations and nonlinear science.




Recent Advances On Elliptic And Parabolic Issues - Proceedings Of The 2004 Swiss-japanese Seminar


Book Description

This volume is a collection of articles discussing the most recent advances on various topics in partial differential equations. Many important issues regarding evolution problems, their asymptotic behavior and their qualitative properties are addressed. The quality and completeness of the articles will make this book a source of inspiration and references in the future.




Handbook of Dynamical Systems


Book Description

This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.




A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures


Book Description

Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\! \ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \wedge^2 W \rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quaternionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms. In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quaternionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Z \rightarrow M$ and the canonical ${\mathrm SO}(3)$-principal bundle $S \rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base. More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $\mathcal D$ of complex codimension one, which is a complex contact structure if and only if $\Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Z \rightarrow \bar{Z}$ into a homogeneous complex manifold $\bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $\mathfrak{spin}(V)$-equivariant linear map $\Pi : \vee^2 W \rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $\Pi$ is nondegenerate.




Homogeneous Integral Table Algebras of Degree Three: A Trilogy


Book Description

Homogeneous integral table algebras of degree three with a faithful real element. The algebras of the title are classified to exact isomorphism; that is, the sets of structure constants which arise from the given basis are completely determined. Other results describe all possible extensions (pre-images), with a faithful element which is not necessarily real, of certain simple homogeneous integral table algebras of degree three. On antisymmetric homogeneous integral table algebras of degree three. This paper determines the homogeneous integral table algebras of degree three in which the given basis has a faithful element and has no nontrivial elements that are either real (symmetric) or linear, and where an additional hypothesis is satisfied. It is shown that all such bases must occur as the set of orbit sums in the complex group algebra of a finite abelian group under the action of a fixed-point-free automorphism oforder three. Homogeneous integral table algebras of degree three with no nontrivial linear elements. The algebras of the title which also have a faithful element are determined to exact isomorphism. All of the simple homogeneous integral table algebras of degree three are displayed, and the commutative association schemes in which all the nondiagonal relations have valency three and where some relation defines a connected graph on the underlying set are classified up to algebraic isomorphism.




The Dirichlet Problem for Parabolic Operators with Singular Drift Terms


Book Description

This memoir considers the Dirichlet problem for parabolic operators in a half space with singular drift terms. Chapter I begins the study of a parabolic PDE modelled on the pullback of the heat equation in certain time varying domains considered by Lewis-Murray and Hofmann-Lewis. Chapter II obtains mutual absolute continuity of parabolic measure and Lebesgue measure on the boundary of this halfspace and also that the $L DEGREESq(R DEGREESn)$ Dirichlet problem for these PDEs has a solution when $q$ is large enough. Chapter III proves an analogue of a theorem of Fefferman, Kenig, and Pipher for certain parabolic PDEs with singular drift terms. Each of the chapters that comprise this memoir has its own numbering system and list




Asymptotics for Solutions of Linear Differential Equations Having Turning Points with Applications


Book Description

Asymptotics are built for the solutions $y_j(x, \lambda)$, $y_j DEGREES{(k)}(0, \lambda)=\delta_{j\, n-k}$, $0\le j, k+1\le n$ of the equation $L(y)=\lambda p(x)y, \quad x\in [0,1], $ where $L(y)$ is a linear differential operator of whatever order $n\ge 2$ and $p(x)$ is assumed to possess a finite number of turning points. The established asymptotics are afterwards applied to the study of: 1) the existence of infinite eigenvalue sequences for various multipoint boundary problems posed on $L(y)=\lambda p(x)y, \quad x\in [0,1], $, especially as $n=2$ and $n=3$ (let us be aware that the same method can be successfully applied on many occasions in case $n>3$ too) and 2) asymptotical distribution of the corresponding eigenvalue sequences on the