RealTime Physics: Active Learning Laboratories, Module 1


Book Description

The authors of RealTime Physics Active Learning Laboratories, Module 1: Mechanics, 3rd Edition - David Sokoloff, Priscilla Laws, and Ron Thornton - have been pioneers in the revolution of the physics industry. In this edition, they provide a set of labs that utilize modern lab technology to provide hands-on information, as well as an empirical look at several new key concepts. They focus on the teaching/learning issues in the lecture portion of the course, as well as logistical lab issues such as space, class size, staffing, and equipment maintenance. Issues similar to those in the lecture have to with preparation and willingness to study.




RealTime Physics: Active Learning Laboratories, Module 3


Book Description

RealTime Physics is a series of introductory laboratory modules that use computer data acquisition tools (microcomputer-based lab or MBL tools) to help students develop important physics concepts while acquiring vital laboratory skills. Besides data acquisition, computers are used for basic mathematical modeling, data analysis, and simulations. There are 4 RealTime Physics modules: Module 1: Mechanics, Module 2: Heat and Thermodynamics, Module 3: Electricity and Magnetism, and Module 4: Light and Optics.




RealTime Physics, Heat and Thermodynamics, Module 2


Book Description

This computer-based lab manual contains experiments in mechanics, thermodynamics, E&M, and optics using hardware and software designed to enhance readers' understanding of calculus-based physics concepts. It uses an active learning cycle, including concept overviews, hypothesis-testing, prediction-making, and investigations.




RealTime Physics Active Learning Laboratories, Module 4


Book Description

RealTime Physics is a series of introductory laboratory modules that use computer data acquisition tools (microcomputer-based lab or MBL tools) to help students develop important physics concepts while acquiring vital laboratory skills. Besides data acquisition, computers are used for basic mathematical modeling, data analysis, and simulations. There are 4 RealTime Physics modules: Module 1: Mechanics, Module 2: Heat and Thermodynamics, Module 3: Electricity and Magnetism, and Module 4: Light and Optics.




Real-Time Collision Detection


Book Description

Written by an expert in the game industry, Christer Ericson's new book is a comprehensive guide to the components of efficient real-time collision detection systems. The book provides the tools and know-how needed to implement industrial-strength collision detection for the highly detailed dynamic environments of applications such as 3D games, virtual reality applications, and physical simulators. Of the many topics covered, a key focus is on spatial and object partitioning through a wide variety of grids, trees, and sorting methods. The author also presents a large collection of intersection and distance tests for both simple and complex geometric shapes. Sections on vector and matrix algebra provide the background for advanced topics such as Voronoi regions, Minkowski sums, and linear and quadratic programming. Of utmost importance to programmers but rarely discussed in this much detail in other books are the chapters covering numerical and geometric robustness, both essential topics for collision detection systems. Also unique are the chapters discussing how graphics hardware can assist in collision detection computations and on advanced optimization for modern computer architectures. All in all, this comprehensive book will become the industry standard for years to come.




Philosophy of Physics


Book Description

Philosophical foundations of the physics of space-time This concise book introduces nonphysicists to the core philosophical issues surrounding the nature and structure of space and time, and is also an ideal resource for physicists interested in the conceptual foundations of space-time theory. Tim Maudlin's broad historical overview examines Aristotelian and Newtonian accounts of space and time, and traces how Galileo's conceptions of relativity and space-time led to Einstein's special and general theories of relativity. Maudlin explains special relativity with enough detail to solve concrete physical problems while presenting general relativity in more qualitative terms. Additional topics include the Twins Paradox, the physical aspects of the Lorentz-FitzGerald contraction, the constancy of the speed of light, time travel, the direction of time, and more. Introduces nonphysicists to the philosophical foundations of space-time theory Provides a broad historical overview, from Aristotle to Einstein Explains special relativity geometrically, emphasizing the intrinsic structure of space-time Covers the Twins Paradox, Galilean relativity, time travel, and more Requires only basic algebra and no formal knowledge of physics




The Direction of Time


Book Description

Distinguished physicist examines emotive significance of time, time order of mechanics, time direction of thermodynamics and microstatistics, time direction of macrostatistics, time of quantum physics, more. 1971 edition.




RealTime Physics Active Learning Laboratories, Module 4


Book Description

The authors of RealTime Physics - David Sokoloff, Priscilla Laws, and Ron Thornton - have been pioneers in the revolution of the physics industry. In this edition, they provide a set of labs that utilize modern lab technology to provide hands-on information, as well as an empirical look at several new key concepts. They focus on the teaching/learning issues in the lecture portion of the course, as well as logistical lab issues such as space, class size, staffing, and equipment maintenance. Issues similar to those in the lecture have to with preparation and willingness to study.




RealTime Physics: Active Learning Laboratories, Module 2


Book Description

RealTime Physics is a series of introductory laboratory modules that use computer data acquisition tools (microcomputer-based lab or MBL tools) to help students develop important physics concepts while acquiring vital laboratory skills. Besides data acquisition, computers are used for basic mathematical modeling, data analysis, and simulations. There are 4 RealTime Physics modules: Module 1: Mechanics, Module 2: Heat and Thermodynamics, Module 3: Electricity and Magnetism, and Module 4: Light and Optics.




Game Physics Engine Development


Book Description

Physics is really important to game programmers who need to know how to add physical realism to their games. They need to take into account the laws of physics when creating a simulation or game engine, particularly in 3D computer graphics, for the purpose of making the effects appear more real to the observer or player.The game engine ne