Recent Advancements in Metallic Glasses


Book Description

The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.




Recent Advancements in Metallic Glasses


Book Description

The Special Issue “Recent Advancements in Metallic Glasses” presents ten original papers, considering both scientific and application issues related to metallic glasses. The papers are devoted to general consideration of the formation and defects of the glassy structure, defect evolution due to heat treatment, deformation behavior upon compression and high-pressure torsion, amorphous-crystalline transformation, hydrogenation behavior, and biomedical applications.




Bulk Metallic Glasses


Book Description

Reflecting the fast pace of research in the field, the Second Edition of Bulk Metallic Glasses has been thoroughly updated and remains essential reading on the subject. It incorporates major advances in glass forming ability, corrosion behavior, and mechanical properties. Several of the newly proposed criteria to predict the glass-forming ability of alloys have been discussed. All other areas covered in this book have been updated, with special emphasis on topics where significant advances have occurred. These include processing of hierarchical surface structures and synthesis of nanophase composites using the chemical behavior of bulk metallic glasses and the development of novel bulk metallic glasses with high-strength and high-ductility and superelastic behavior. New topics such as high-entropy bulk metallic glasses, nanoporous alloys, novel nanocrystalline alloys, and soft magnetic glassy alloys with high saturation magnetization have also been discussed. Novel applications, such as metallic glassy screw bolts, surface coatings, hyperthermia glasses, ultra-thin mirrors and pressure sensors, mobile phone casing, and degradable biomedical materials, are described. Authored by the world’s foremost experts on bulk metallic glasses, this new edition endures as an indispensable reference and continues to be a one-stop resource on all aspects of bulk metallic glasses.




Metallic Glasses


Book Description

Metallic glasses are very promising engineering and functional materials due to their unique mechanical, chemical, and physical properties, attracting increasing attention from both scientific and industrial communities. However, their practical applications are greatly hindered due to three main problems: dimensional limit, poor tension plasticity, and difficulty in machining and shaping. Therefore, further investigation of these issues is urgently required. This book provides readers with recent achievements and developments in the properties and processing of metallic glasses, including mainly thermoplastic forming of metallic glasses (Chapter 2), atomic-level simulation of mechanical deformation of metallic glasses (Chapter 3), metallic glass matrix composites (Chapter 4), and tribo-electrochemical applications of metallic glasses (Chapters 5 and 6).




Bulk Metallic Glasses and Their Composites


Book Description

The book provides a comprehensive state-of-the-art review on the topic of bulk metallic glass matrix composites and understanding of mechanisms of development of composite microstructure. It discusses mechanisms of formation and toughening both during conventional casting routes and additive manufacturing. The second edition encompasses new studies and highlights advancement in mechanical properties, characterization, processing and applications.




Metallic Glass-Based Nanocomposites


Book Description

Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.




Bulk Metallic Glasses


Book Description

Bulk metallic glasses are a new emerging field of materials with many desirable and unique properties. These amorphous materials have many diverse applications from structural applications to biomedical implants. This book provides a complete overview of bulk metallic glasses. It covers the principles of alloy design, glass formation, processing, atomistic modeling, computer simulations, mechanical properties and microstructures.










Bulk Metallic Glasses and Their Composites


Book Description

This book presents a comprehensive and holistic study of microstrucure evoution during solidification and additive manufacturin.g Bulk metallic glasses and their composites have attracted a lot of attention lately in the scientific community owing to their excellent mechanical properties (combination of hardness, strength, and high elastic strain limit). However, they still lack toughness and tensile ductility and exhibit catastrophic failure upon tension. This can be overcome by various means, of which in situ introduction of ductile crystalline precipitates/phases during solidification proved to be the best. Various studies have been carried out in the last two decades, which explain this phenomenon. However, there is a gap on how this can be achieved in modern additive manufacturing exploiting inherent nature of process. This book aims to bridge this gap. A comprehensive and holistic study is presented, documenting the step-by-step evolution of these materials since their inception till date, explaining the development of toughness in them by modeling and simulation of microstructure evolution during solidification and additive manufacturing.