Recent Advancements in Polymeric Materials for Electrochemical Energy Storage


Book Description

This book covers the current, state-of-the-art knowledge, fundamental mechanisms, design strategies, and future challenges in electrochemical energy storage devices using polymeric materials. It looks into the fundamentals and working principles of electrochemical energy devices such as supercapacitors and batteries and explores new approaches for the synthesis of polymeric materials and their composites to broaden the vision for researchers to explore advanced materials for electrochemical energy applications. All the chapters are written by leading experts in these areas making it suitable as a reference for students as well as provide new directions to researchers and scientists working in polymers, energy, and nanotechnology.




Advances in Supercapacitor and Supercapattery


Book Description

Advances in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices provides a deep insight into energy storage systems and their applications. The first two chapters cover the detailed background, fundamental charge storage mechanism and the various types of supercapacitor. The third chapter give details about the hybrid device (Supercapattery) which comprises of battery and capacitive electrode. The main advantages of Supercapattery over batteries and supercapacitor are discussed in this chapter. The preceding three chapters cover the electrode materials used for supercapattery. The electrolyte is a major part that significantly contributes to the performance of the device. Therefore, different kinds of electrolytes and their suitability are discussed in chapter 6 and 7. The book concludes with a look at the potential applications of supercapattery, challenges and future prospective. This book is beneficial for research scientists, engineers and students who are interested in the latest developments and fundamentals of energy storage mechanism and clarifies the misleading concepts in this field. Presents the three classes of energy storage devices and clarifies the difference between between pseudocapacitor and battery grade material Covers the synthesis strategies to enhance the overall performance of the supercapacitor device (including power density) Explains the energy storage mechanism based on the fundamental concept of physics and electrochemistry




Redox Polymers for Energy and Nanomedicine


Book Description

Redox Polymers for Energy and Nanomedicine highlights trends in the chemistry, characterization and application of polymers with redox properties.




New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells


Book Description

This book reviews research work on electrochemical power sources in the former Warsaw Pact countries. It explores the role carbon plays in the cathodes and anodes of power sources and reveals the latest research into the development of metal air batteries, supercapacitors, fuel cells and lithium-ion and lithium-ion polymer batteries. For the first time, a full chapter was devoted to metal-carbon composites as electrode materials of lithium-ion batteries




Printed Batteries


Book Description

Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.




New Trends in Intercalation Compounds for Energy Storage


Book Description

Recent advances in electrochemistry and materials science have opened the way to the evolution of entirely new types of energy storage systems: rechargeable lithium-ion batteries, electrochroms, hydrogen containers, etc., all of which have greatly improved electrical performance and other desirable characteristics. This book encompasses all the disciplines linked in the progress from fundamentals to applications, from description and modelling of different materials to technological use, from general diagnostics to methods related to technological control and operation of intercalation compounds. Designing devices with higher specific energy and power will require a more profound understanding of material properties and performance. This book covers the status of materials and advanced activities based on the development of new substances for energy storage.







Polymer Blend Nanocomposites for Energy Storage Applications


Book Description

Polymer Blend Nanocomposites for Energy Storage Applications presents the latest developments in polymer blend-based nanocomposites for applications in energy storage, covering theoretical concepts, preparation methods, characterization techniques, properties and performance. The book begins by introducing polymer blend-based nanocomposites, preparation methods, mechanisms, requirements, theory, modeling, and simulation, with subsequent sections covering the use of specific base materials, including elastomers, thermoplastics, thermoset polymers, and biodegradable polymers. Final sections covers polymer blend nanocomposites with different fillers, both for conducting polymers and non-conducting polymers. Devices discussed include capacitors, supercapacitors, batteries, fuel cells, and solar cells. Finally, other key aspects are considered, including the conversion from laboratory to industry and recycling and lifecycle assessment of polymer blend nanocomposites used in energy devices. - Focuses on nanocomposites based on polymer blends, both conducting and non-conducting - Guides the reader to applications in capacitors, supercapacitors, batteries, fuel cells, solar cells, and other areas - Considers modeling and simulation, translation from lab to industry, recycling, and lifecycle assessment




Ceramic and Specialty Electrolytes for Energy Storage Devices


Book Description

Ceramic and Specialty Electrolytes for Energy Storage Devices, Volume II, investigates recent progress and challenges in a wide range of ceramic solid and quasi-solid electrolytes and specialty electrolytes for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Offers a detailed outlook on the performance requirements and ion transportation mechanism in solid polymer electrolytes • Covers solid-state electrolytes based on oxides (perovskite, anti-perovskite) and sulfide-type ion conductor electrolytes for lithium-ion batteries followed by solid-state electrolytes based on NASICON and garnet-type ionic conductors • Discusses electrolytes employed for high-temperature lithium-ion batteries, low-temperature lithium-ion batteries, and magnesium-ion batteries • Describes sodium-ion batteries, transparent electrolytes for energy storage devices, non-platinum-based cathode electrocatalyst for direct methanol fuel cells, non-platinum-based anode electrocatalyst for direct methanol fuel cells, and ionic liquid-based electrolytes for supercapacitor applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials and chemical engineers, as well as those involved in related disciplines.




Polymer Electrolytes for Energy Storage Devices


Book Description

Polymer Electrolytes for Energy Storage Devices, Volume I, offers a detailed explanation of recent progress and challenges in polymer electrolyte research for energy storage devices. The influence of these electrolyte properties on the performance of different energy storage devices is discussed in detail. Features: • Discusses a variety of energy storage systems and their workings and a detailed history of LIBs • Covers a wide range of polymer-based electrolytes including PVdF, PVdF-co-HFP, PAN, blend polymeric systems, composite polymeric systems, and polymer ionic liquid gel electrolytes • Provides a comprehensive review of biopolymer electrolytes for energy storage applications • Suitable for readers with experience in batteries as well as newcomers to the field This book will be invaluable to researchers and engineers working on the development of next-generation energy storage devices, including materials, chemical, electrical, and mechanical engineers, as well as those involved in related disciplines.