Smart Power Distribution Systems


Book Description

Smart Power Distribution Systems: Control, Communication, and Optimization explains how diverse technologies work to build and maintain smart grids around the globe. Yang, Yang and Li present the most recent advances in the control, communication and optimization of smart grids and provide unique insight into power system control, sensing and communication, and optimization technologies. The book covers control challenges for renewable energy and smart grids, communication in smart power systems, and optimization challenges in smart power system operations. Each area discussed focuses on the scientific innovations relating to the approaches, methods and algorithmic solutions presented. Readers will develop sound knowledge and gain insights into the integration of renewable energy generation in smart power distribution systems. - Presents the latest technological advances in electric power distribution networks, with a particular focus on methodologies, approaches and algorithms - Provides insights into the most recent research and developments from expert contributors from across the world - Presents a clear and methodical structure that guides the reader through discussion and analysis, providing unique insights and sound knowledge along the way




Power Electronics in Renewable Energy Systems and Smart Grid


Book Description

The comprehensive and authoritative guide to power electronics in renewable energy systems Power electronics plays a significant role in modern industrial automation and high- efficiency energy systems. With contributions from an international group of noted experts, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers a comprehensive review of the technology and applications of power electronics in renewable energy systems and smart grids. The authors cover information on a variety of energy systems including wind, solar, ocean, and geothermal energy systems as well as fuel cell systems and bulk energy storage systems. They also examine smart grid elements, modeling, simulation, control, and AI applications. The book's twelve chapters offer an application-oriented and tutorial viewpoint and also contain technology status review. In addition, the book contains illustrative examples of applications and discussions of future perspectives. This important resource: Includes descriptions of power semiconductor devices, two level and multilevel converters, HVDC systems, FACTS, and more Offers discussions on various energy systems such as wind, solar, ocean, and geothermal energy systems, and also fuel cell systems and bulk energy storage systems Explores smart grid elements, modeling, simulation, control, and AI applications Contains state-of-the-art technologies and future perspectives Provides the expertise of international authorities in the field Written for graduate students, professors in power electronics, and industry engineers, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications offers an up-to-date guide to technology and applications of a wide-range of power electronics in energy systems and smart grids.




Research Advancements in Smart Technology, Optimization, and Renewable Energy


Book Description

As environmental issues remain at the forefront of energy research, renewable energy is now an all-important field of study. And as smart technology continues to grow and be refined, its applications broaden and increase in their potential to revolutionize sustainability studies. This potential can only be fully realized with a thorough understanding of the most recent breakthroughs in the field. Research Advancements in Smart Technology, Optimization, and Renewable Energy is a collection of innovative research that explores the recent steps forward for smart applications in sustainability. Featuring coverage on a wide range of topics including energy assessment, neural fuzzy control, and biogeography, this book is ideally designed for advocates, policymakers, engineers, software developers, academicians, researchers, and students.




Design of Smart Power Grid Renewable Energy Systems


Book Description

The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable Microgrids The revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems. In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB® simulation test bed. This important book: Reviews the basic principles underlying power systems Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods Describes the fundamental concepts in the design and operation of smart grid power grids Supplementary material includes a solutions manual and PowerPoint presentations for instructors Written for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources.




Recent Advances in Renewable Energy Technologies


Book Description

Recent Advances in Renewable Energy Technologies is a comprehensive reference covering critical research, laboratory and industry developments on renewable energy technological, production, conversion, storage, and management, including solar energy systems (thermal and photovoltaic), wind energy, hydropower, geothermal energy, bioenergy and hydrogen production, and large-scale development of renewable energy technologies and their impact on the global economy and power capacity. Technological advancements include resources assessment and deployment, materials performance improvement, system optimization and sizing, instrumentation and control, modeling and simulation, regulations, and policies.Each modular chapter examines recent advances in specific renewable energy systems, providing theoretical and applied aspects of system optimization, control and management and supports them with global case studies demonstrating practical applications and economical and environmental aspects through life cycle analysis. The book is of interest to engineering graduates, researchers, professors and industry professionals involved in the renewable energy sector and advanced engineering courses dealing with renewable energy, sources, thermal and electrical energy production and sustainability. - Focuses on the progress and research trends in solar, wind, biomass, and hydropower and geothermal energy production and conversion - Includes advanced techniques for the distribution, management, optimization, and storage of heat and energy using case studies




Renewable Energy Systems


Book Description

In this new edition of Renewable Energy Systems, globally recognized renewable energy researcher and professor, Henrik Lund, sets forth a straightforward, comprehensive methodology for comparing different energy systems' abilities to integrate fluctuating and intermittent renewable energy sources. The book does this by presenting an energy system analysis methodology. The book provides the results of more than fifteen comprehensive energy system analysis studies, examines the large-scale integration of renewable energy into the present system, and presents concrete design examples derived from a dozen renewable energy systems around the globe. Renewable Energy Systems, Second Edition also undertakes the socio-political realities governing the implementation of renewable energy systems by introducing a theoretical framework approach aimed at understanding how major technological changes, such as renewable energy, can be implemented at both the national and international levels. - Provides an introduction to the technical design of renewable energy systems - Demonstrates how to analyze the feasibility and efficiency of large-scale systems to help implementers avoid costly trial and error - Addresses the socio-political challenge of implementing the shift to renewables - Features a dozen extensive case studies from around the globe that provide real-world templates for new installations




Advances in Clean Energy Technologies


Book Description

This book presents select proceedings of the international conference on Innovations in Clean Energy Technologies (ICET 2020) and examines a range of durable, energy efficient and next-generation smart green technologies for sustainable future by reflecting on the trends, advances and development taking place all across the globe. The topics covered include smart technologies based product, energy efficient systems, solar and wind energy, carbon sequestration, green transportation, green buildings, energy material, biomass energy, smart cites, hydro power, bio-energy and fuel cell. The book also discusses various performance attributes of these clean energy technologies and their workability and carbon footprint. The book will be a valuable reference for beginners, researchers and professionals interested in clean energy technologies.




Hybrid Technologies for Power Generation


Book Description

Hybrid Technologies for Power Generation addresses the topics related to hybrid technologies by coupling conventional thermal engines with novel technologies, including fuel cells, batteries, thermal storage and electrolysis, and reporting on the most recent advances concerning transport and stationary applications. Potential operating schemes of hybrid power generation systems are covered, highlighting possible combinations of technology and guideline selection according to the energy demands of end-users. Going beyond state-of-the-art technological developments for processes, devices and systems, this book discusses the environmental impact and existing hurdles of moving from a single device to new approaches for efficient energy generation, transfer, conversion, high-density storage and consumption. By describing the practical viability of novel devices coupled to conventional thermal devices, this book has a decisive impact in energy system research, supporting those in the energy research and engineering communities. - Covers detailed thermodynamic requirements for multiple smart technologies included in hybrid systems (i.e., FC, electrolysers, supercapacitors, batteries, thermal storage, etc.) - Features fundamental analysis and modeling to optimize the combination of smart technologies with traditional engines - Details protocols for the analysis, operation and requirements of large-scale production




New Technologies for Power System Operation and Analysis


Book Description

New Technologies for Power System Operation and Analysis considers the very latest developments in renewable energy integration and system operation, including electricity markets and wide-area monitoring systems and forecasting. Helping readers quickly grasp the essential information needed to address renewable energy integration challenges, this new book looks at basic power system mathematical models, advanced renewable integration and system optimizations from transmission and distribution system sides. Sections cover wind, solar, gas and petroleum, making this a useful reference for all engineers interested in power system operation. Includes codes in MATLAB® and Python Provides a complete analysis of all new and relevant power system technologies Covers the impact on existing power system operations at the advanced level, with detailed technical insights