Recent Advances in Environmentally Compatible Polymers


Book Description

The book offers a comprehensive overview of research undertaken in all aspects of environmentally compatible polymers.




Eco-friendly and Smart Polymer Systems


Book Description

This proceedings book presents the main findings of the 13th International Seminar on Polymer Science and Technology ( ISPST 2018), which was held at Amirkabir University of Technology, Tehran, on November 10–22, 2018. This forum was the culmination of more than three decades of academic and industrial activities of Iranian scholars and professionals, and the participation of many notable international scientists, in covering various important polymer-related subjects of concern to Iran and the world at large, including polymer synthesis, processing and properties, as well as issues concerning polymer degradation, stability, and environmental aspects. For the past half a century, the growing concern for advancing human health, quality of life, and – especially in the last few decades – avoiding and combating environmental pollution have shaped and driven scientific activities geared toward the creation of smart materials that are compatible with the human body, and have prompted scientists and technologists to pursue research using natural and sustainable sources. This book highlights efforts to responsibly address the problems caused by, and which can potentially be solved by, polymers and plastics.




Environmentally Friendly Polymers and Polymer Composites


Book Description

Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.




Advances in Sustainable Polymer Composites


Book Description

Advances in Sustainable Polymer Composites reviews recent scientific findings on the production and use of sustainable polymers and composites as innovative new materials. The book discusses the importance of sustainable polymers in terms of current practices and how to address environmental and economic issues. Attention is focused on the physical, chemical and electrical properties of these composites. The book also looks at the lifecycle of both single and hybrid polymers and nanocomposites, with chapters covering the latest research findings on sustainable polymer composites with various filler loadings and their improvement on compatibility. From the viewpoint of polymer composites, this book covers not only well-known sustainable future trends in sustainable polymers and composites, but also advanced materials produced from micro, nano and pico-scale fillers that achieve better physical and mechanical results. - Features advanced materials produced from micro, nano and pico-scale fillers - Emphasizes the modeling and prediction of thermal, rheological and mechanical behavior - Covers various types of fillers and different reinforcement agents - Focuses on all aspects of fabrication, characterization and applications - Addresses sustainability approaches and solutions




Polymer Green Flame Retardants


Book Description

Polymer Green Flame Retardants covers key issues regarding the response of polymers during fire, the mechanisms of their flame retardation, the regulations imposed on their use, and the health hazards arising from their combustion. Presenting the latest research developments, the book focuses in particular on nanocomposites, believed to be the most promising approach for producing physically superior materials with low flammability and ecological impact. The fire properties of nanocomposites of various matrixes and fillers are discussed, the toxicological characteristics of these materials are analyzed, addressing also their environmental sustainability. Edited by distinguished scientists, including an array of international industry and academia experts, this book will appeal to chemical, mechanical, environmental, material and process engineers, upper-level undergraduate and graduate students in these disciplines, and generally to researchers developing commercially attractive and environmentally friendly fire-proof products. - Provides recent findings on the manufacture of environmentally sustainable flame retardant polymeric materials - Covers legislation and regulations concerning flame retarded polymeric material use - Includes tables containing the fire properties of the most common polymeric materials




Sustainable Polymers from Biomass


Book Description

Offering a unique perspective summarizing research on this timely important topic around the globe, this book provides comprehensive coverage of how molecular biomass can be transformed into sustainable polymers. It critically discusses and compares a few classes of biomass - oxygen-rich, hydrocarbon-rich, hydrocarbon and non-hydrocarbon (including carbon dioxide) as well as natural polymers - and equally includes products that are already commercialized. A must-have for both newcomers to the field as well as established researchers in both academia and industry.




The Handbook of Polyhydroxyalkanoates


Book Description

The third volume of the Handbook of Polyhydroxyalkanoates (PHA) focusses on the production of functionalized PHA bio-polyesters, the post-synthetic modification of PHA, processing and additive manufacturing of PHA, development and properties of PHA-based (bio)composites and blends, the market potential of PHA and follow-up materials, different bulk- and niche applications of PHA, and the fate and use of spent PHA items. Divided into fourteen chapters, it describes functionalized PHA and PHA modification, processing and their application including degradation of spent PHA-based products and fate of these bio-polyesters during compositing and other disposal strategies. Aimed at graduate students and professionals in Polymer science, chemical engineering and bioprocessing, it: Covers current state of the art in the development of chemically modifiable PHA including mult-istep modifications of isolated biopolyesters, short syntheses of monomer feedstocks and so forth. Describes design of functionalized PHA-based polymeric materials by chemical modification . Illustrates preparation of bioactive oligomers derived from microbial PHA and synthetic analogues of natural PHA oligomers. Discusses processing and thermomechanical properties of PHA. Reviews advantages of PHA against other bio-based and conventional polymers with current applications and potential uses of PHA-based polymers highlighting innovative products.




Thermal Properties of Green Polymers and Biocomposites


Book Description

From the reviews: "...This very well written new book is recommended to academic and industrial researchers and specialists interested in green polymers and mainly in their thermal properties...This new and opportune book covers some important properties of green polymers and bio-composites." (D. Feldman, Concordia University, Montreal, Canada)




Progress in Thermochemical Biomass Conversion


Book Description

This book is for chemical engineers, fuel technologists, agricultural engineers and chemists in the world-wide energy industry and in academic, research and government institutions. It provides a thorough review of, and entry to, the primary and review literature surrounding the subject. The authors are internationally recognised experts in their field and combine to provide both commercial relevance and academic rigour. Contributions are based on papers delivered to the Fifth International Conference sponsored by the IEA Bioenergy Agreement.