Recent Advances in Flowering Time Control


Book Description

The onset of flowering is an important step during the lifetime of a flowering plant. During the past two decades, there has been enormous progress in our understanding of how internal and external (environmental) cues control the transition to reproductive growth in plants. Many flowering time regulators have been identified from the model plant Arabidopsis thaliana. Most of them are assembled in regulatory pathways, which converge to central integrators which trigger the transition of the vegetative into an inflorescence meristem. For crop cultivation, the time of flowering is of upmost importance, because it determines yield. Phenotypic variation for this trait is largely controlled by genes, which were often modified during domestication or crop improvement. Understanding the genetic basis of flowering time regulation offers new opportunities for selection in plant breeding and for genome editing and genetic modification of crop species.




Photomorphogenesis in Plants


Book Description

David Dickinson is a household name, the king of the catchphrase, undisputed darling of daytime TV and a rising star. He's a respected antiques expert and exudes a taste for the finer things in life. But the road to his success has not been as smooth as his patter and he's learnt a lot at the school of hard knocks.




Photoperiodism in Plants


Book Description

Photoperiodism is the response to the length of the day that enables living organisms to adapt to seasonal changes in their environment as well as latitudinal variation. As such, it is one of the most significant andcomplex aspects of the interaction between plants and their environment and is a major factor controlling their growth and development. As the new and powerful technologies of molecular genetics are brought to bear on photoperiodism, it becomes particularly important to place new work in the context of the considerable amount of physiological information which already exists on the subject. This innovative book will be of interest to a wide range of plant scientists, from those interested in fundamental plant physiology and molecular biology to agronomists and crop physiologists. - Provides a self-sufficient account of all the important subjects and key literature references for photoperiodism - Includes research of the last twenty years since the publication of the First Edition - Includes details of molecular genetic techniques brought to bear on photoperiodism




Nuclear pre-mRNA Processing in Plants


Book Description

During the last few years, tremendous progress has been made in understanding various aspects of pre-mRNA processing. This book, with contributions from leading scientists in this area, summarizes recent advances in nuclear pre-mRNA processing in plants. It provides researchers in the field, as well as those in related areas, with an up-to-date and comprehensive, yet concise, overview of the current status and future potential of this research in understanding plant biology.




Light and the Flowering Process


Book Description

Light and the flowering process; Light and the flowering process - setting the scene; Action of phytochrome in light-grown plants; The photoperiodic induction of flowering in short-day plants; Photoperiodic induction in long-day plants; Light and autonomous induction; Light and vernalization; Photoperception and transduction of daylength signals; Light and photoperiodic timing; Photoreceptor action in induction; Biochemistry in induction - the immediate action of light; Photoperiodic induction, the floral stimulus and flower-promoting substances; Photoperiodic induction - flower inhibiting substances; Light-dependent changes at the apex - evocation; Assimilates and evocation; The response of the shoot apex to light-generated signals from the leaves; Genetic studies; Genetics and its potential for understanding the action of light in flowering; Flower development and light; Light and flower development; Photoperiod and the abscission of flower buds in Phaseolus vulgaris; Photocontrol of flower opening in Pharbitis nil; The interaction of photosynthesis and photoperiodism in induction; The factors controlling floral evocation: an overview.







Recent Advances of Epigenetics in Crop Biotechnology


Book Description

Epigenetics is a new field that explains gene expression at the chromatin structure and organization level. Three principal epigenetic mechanisms are known and hundreds of combinations among them can develop different phenotypic characteristics. DNA methylation, histone modifications and small RNAs have been identified, and their functions are being studied in order to understand the mechanisms of interaction and regulation among the different biological processes in plants. Although, fundamental epigenetic mechanisms in crop plants are beginning to be elucidated, the comprehension of the different epigenetic mechanisms, by which plant gene regulation and phenotype are modified, is a major topic to develop in the near future in order to increase crop productivity. Thus, the importance of epigenetics in improving crop productivity is undoubtedly growing. Current research on epigenetics suggest that DNA methylation, histone modifications and small RNAs are involved in almost every aspect of plant life including agronomically important traits such as flowering time, fruit development, responses to environmental factors, defense response and plant growth. The aim of this Research Topic is to explore the recent advances concerning the role of epigenetics in crop biotechnology, as well as to enhance and promote interactions among high quality researchers from different disciplines such as genetics, cell biology, pathology, microbiology, and evolutionary biology in order to join forces and decipher the epigenetic mechanisms in crop productivity.




Advances in Wheat Genetics: From Genome to Field


Book Description

This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.




Plant Circadian Networks


Book Description

Plant Circadian Networks: Methods and Protocols provides a collection of protocols to investigate clock-controlled parameters including transcript and small RNA levels, promoter activity using luciferase reporters, protein levels and posttranslational modification, protein-protein interaction, in vivo DNA-protein interaction and RNA-protein interaction, cellular redox state, Ca2+ levels, and innate immune responses. Furthermore, the use of bioinformatics resources is described to evaluate high throughput data sets and to integrate the data into an overarching picture of circadian networks in the cell. Additional chapters focus on seasonal processes like flowering time control, and techniques on trees, moss and algae. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Plant Circadian Networks: Methods and Protocols is designed not only for the chronobiology community dealing with circadian biology but also for the plant community in general.