Recent Progress in Inequalities


Book Description

This volume is dedicated to the late Professor Dragoslav S. Mitrinovic(1908-1995), one of the most accomplished masters in the domain of inequalities. Inequalities are to be found everywhere and play an important and significant role in almost all subjects of mathematics as well as in other areas of sciences. Professor Mitrinovic used to say: `There are no equalities, even in human life inequalities are always encountered.' This volume provides an extensive survey of the most current topics in almost all subjects in the field of inequalities, written by 85 outstanding scientists from twenty countries. Some of the papers were presented at the International Memorial Conference dedicated to Professor D.S. Mitrinovic, which was held at the University of Nis, June 20-22, 1996. Audience: This book will be of great interest to researchers in real, complex and functional analysis, special functions, approximation theory, numerical analysis and computation, and other fields, as well as to graduate students requiring the most up-to-date results.




Geometric Inequalities


Book Description




Analytic and Geometric Inequalities and Applications


Book Description

Analytic and Geometric Inequalities and Applications is devoted to recent advances in a variety of inequalities of Mathematical Analysis and Geo metry. Subjects dealt with in this volume include: Fractional order inequalities of Hardy type, differential and integral inequalities with initial time differ ence, multi-dimensional integral inequalities, Opial type inequalities, Gruss' inequality, Furuta inequality, Laguerre-Samuelson inequality with extensions and applications in statistics and matrix theory, distortion inequalities for ana lytic and univalent functions associated with certain fractional calculus and other linear operators, problem of infimum in the positive cone, alpha-quasi convex functions defined by convolution with incomplete beta functions, Chebyshev polynomials with integer coefficients, extremal problems for poly nomials, Bernstein's inequality and Gauss-Lucas theorem, numerical radii of some companion matrices and bounds for the zeros of polynomials, degree of convergence for a class of linear operators, open problems on eigenvalues of the Laplacian, fourth order obstacle boundary value problems, bounds on entropy measures for mixed populations as well as controlling the velocity of Brownian motion by its terminal value. A wealth of applications of the above is also included. We wish to express our appreciation to the distinguished mathematicians who contributed to this volume. Finally, it is our pleasure to acknowledge the fine cooperation and assistance provided by the staff of Kluwer Academic Publishers. June 1999 Themistocles M. Rassias Hari M.




Geometric Inequalities


Book Description




Inequalities in Geometry and Applications


Book Description

This book presents the recent developments in the field of geometric inequalities and their applications. The volume covers a vast range of topics, such as complex geometry, contact geometry, statistical manifolds, Riemannian submanifolds, optimization theory, topology of manifolds, log-concave functions, Obata differential equation, Chen invariants, Einstein spaces, warped products, solitons, isoperimetric problem, Erdös–Mordell inequality, Barrow’s inequality, Simpson inequality, Chen inequalities, and q-integral inequalities. By exposing new concepts, techniques and ideas, this book will certainly stimulate further research in the field.




Advances in Mathematical Inequalities


Book Description

Mathematical inequalities are essential tools in mathematics, natural science and engineering. This book gives an overview on recent advances. Some generalizations and improvements for the classical and well-known inequalities are described. They will be applied and further developed in many fields. Applications of the inequalities to entropy theory and quantum physics are also included.




Topics in Geometric Inequalities


Book Description

As a sequel to 113 Geometric Inequalities from the AwesomeMath Summer Program, this book extends the themes discussed in the former book and broadens a problem-solver's competitive arsenal. Strategies from multiple fields, such as Algebra, Calculus, and pure Geometry provide the reader with varied methods useful in mathematics competitions. Starting with the fundamentals such as the triangle inequality and ""broken lines'', the book progresses increasingly to more sophisticated machinery such as the Averaging Method, Quadratic Forms, Finite Fourier Transforms, Level Curves, the Erdös-Mordell and Brunn-Minkowski Inequalities, as well as the Isoperimetric Theorem, to name a few. Rich theory and generalizations accompany the aforementioned topics to supply the reader with a rigorous exploration of fields associated with geometric inequalities.




Functional Inequalities: New Perspectives and New Applications


Book Description

"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational manifestations of Sturm's theory on the oscillatory behavior of certain ordinary differential equations. On the other hand, most geometric inequalities, including those of Sobolev and Log-Sobolev type, are simply expressions of the convexity of certain free energy functionals along the geodesics on the Wasserstein manifold of probability measures equipped with the optimal mass transport metric. Caffarelli-Kohn-Nirenberg and Hardy-Rellich-Sobolev type inequalities are then obtained by interpolating the above two classes of inequalities via the classical ones of Hölder. The subtle Moser-Onofri-Aubin inequalities on the two-dimensional sphere are connected to Liouville type theorems for planar mean field equations."--Publisher's website.




The Analysis and Geometry of Hardy's Inequality


Book Description

This volume presents advances that have been made over recent decades in areas of research featuring Hardy's inequality and related topics. The inequality and its extensions and refinements are not only of intrinsic interest but are indispensable tools in many areas of mathematics and mathematical physics. Hardy inequalities on domains have a substantial role and this necessitates a detailed investigation of significant geometric properties of a domain and its boundary. Other topics covered in this volume are Hardy- Sobolev-Maz’ya inequalities; inequalities of Hardy-type involving magnetic fields; Hardy, Sobolev and Cwikel-Lieb-Rosenbljum inequalities for Pauli operators; the Rellich inequality. The Analysis and Geometry of Hardy’s Inequality provides an up-to-date account of research in areas of contemporary interest and would be suitable for a graduate course in mathematics or physics. A good basic knowledge of real and complex analysis is a prerequisite.