Environmental Epigenetics


Book Description

This book examines the toxicological and health implications of environmental epigenetics and provides knowledge through an interdisciplinary approach. Included in this volume are chapters outlining various environmental risk factors such as phthalates and dietary components, life states such as pregnancy and ageing, hormonal and metabolic considerations and specific disease risks such as cancer cardiovascular diseases and other non-communicable diseases. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses. Environmental Epigenetics imparts integrative knowledge of the science of epigenetics and the issues raised in environmental epidemiology. This book is intended to serve both as a reference compendium on environmental epigenetics for scientists in academia, industry and laboratories and as a textbook for graduate level environmental health courses.







Data Analysis in Molecular Biology and Evolution


Book Description

Data Analysis in Molecular Biology and Evolution introduces biologists to DAMBE, a proprietary, user-friendly computer program for molecular data analysis. The unique combination of this book and software will allow biologists not only to understand the rationale behind a variety of computational tools in molecular biology and evolution, but also to gain instant access to these tools for use in their laboratories. Data Analysis in Molecular Biology and Evolution serves as an excellent resource for advanced level undergraduates or graduates as well as for professionals working in the field.




A History of Molecular Biology


Book Description

Every day it seems the media focus on yet another new development in biology--gene therapy, the human genome project, the creation of new varieties of animals and plants through genetic engineering. These possibilities have all emanated from molecular biology. A History of Molecular Biology is a complete but compact account for a general readership of the history of this revolution. Michel Morange, himself a molecular biologist, takes us from the turn-of-the-century convergence of molecular biology's two progenitors, genetics and biochemistry, to the perfection of gene splicing and cloning techniques in the 1980s. Drawing on the important work of American, English, and French historians of science, Morange describes the major discoveries--the double helix, messenger RNA, oncogenes, DNA polymerase--but also explains how and why these breakthroughs took place. The book is enlivened by mini-biographies of the founders of molecular biology: Delbrück, Watson and Crick, Monod and Jacob, Nirenberg. This ambitious history covers the story of the transformation of biology over the last one hundred years; the transformation of disciplines: biochemistry, genetics, embryology, and evolutionary biology; and, finally, the emergence of the biotechnology industry. An important contribution to the history of science, A History of Molecular Biology will also be valued by general readers for its clear explanations of the theory and practice of molecular biology today. Molecular biologists themselves will find Morange's historical perspective critical to an understanding of what is at stake in current biological research.




The Causes of Molecular Evolution


Book Description

This work provides a unified theory that addresses the important problem of the origin and maintenance of genetic variation in natural populations. With modern molecular techniques, variation is found in all species, sometimes at astonishingly high levels. Yet, despite these observations, the forces that maintain variation within and between species have been difficult subjects of study. Because they act very weakly and operate over vast time scales, scientists must rely on indirect inferences and speculative mathematical models. However, despite these obstacles, many advances have been made. The author's research in molecular genetics, evolution, and bio-mathematics has enabled him to draw on this work, and present a coherent and valuable view of the field. The book is divided into three parts. The first consists of three chapters on protein evolution, DNA evolution, and molecular mechanisms. This section reviews the experimental observations on genetic variation. The second part gives a unified treatment of the mathematical theory of selection in a fluctuating environment. The final two chapters combine the earlier assessments in a treatment of the scientific status of two competing theories for the maintenance of genetic variation. Steeped in the enormous advances population genetics has made over the past 25 years, this book has proven highly popular among human geneticists, biologists, evolutionary theorists, and bio-mathematicians.




Genetics of Adaptation


Book Description

An enduring controversy in evolutionary biology is the genetic basis of adaptation. Darwin emphasized "many slight differences" as the ultimate source of variation to be acted upon by natural selection. In the early 1900’s, this view was opposed by "Mendelian geneticists", who emphasized the importance of "macromutations" in evolution. The Modern Synthesis resolved this controversy, concluding that mutations in genes of very small effect were responsible for adaptive evolution. A decade ago, Allen Orr and Jerry Coyne reexamined the evidence for this neo-Darwinian view and found that both the theoretical and empirical basis for it were weak. Orr and Coyne encouraged evolutionary biologists to reexamine this neglected question: what is the genetic basis of adaptive evolution? In this volume, a new generation of biologists have taken up this challenge. Using advances in both molecular genetic and statistical techniques, evolutionary geneticists have made considerable progress in this emerging field. In this volume, a diversity of examples from plant and animal studies provides valuable information for those interested in the genetics and evolution of complex traits.




Evolution


Book Description

This book proposes an important new paradigm for understanding biological evolution. Shapiro demonstrates why traditional views of evolution are inadequate to explain the latest evidence, and presents an alternative. His information- and systems-based approach integrates advances in symbiogenesis, epigenetics, and saltationism, and points toward an emerging synthesis of physical, information, and biological sciences.




Advances in Animal Genomics


Book Description

Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion




Bioinformatics and Molecular Evolution


Book Description

In the current era of complete genome sequencing, Bioinformatics and Molecular Evolution provides an up-to-date and comprehensive introduction to bioinformatics in the context of evolutionary biology. This accessible text: provides a thorough examination of sequence analysis, biological databases, pattern recognition, and applications to genomics, microarrays, and proteomics emphasizes the theoretical and statistical methods used in bioinformatics programs in a way that is accessible to biological science students places bioinformatics in the context of evolutionary biology, including population genetics, molecular evolution, molecular phylogenetics, and their applications features end-of-chapter problems and self-tests to help students synthesize the materials and apply their understanding is accompanied by a dedicated website - www.blackwellpublishing.com/higgs - containing downloadable sequences, links to web resources, answers to self-test questions, and all artwork in downloadable format (artwork also available to instructors on CD-ROM). This important textbook will equip readers with a thorough understanding of the quantitative methods used in the analysis of molecular evolution, and will be essential reading for advanced undergraduates, graduates, and researchers in molecular biology, genetics, genomics, computational biology, and bioinformatics courses.




Molecular Evolution and Phylogenetics


Book Description

During the last ten years, remarkable progress has occurred in the study of molecular evolution. Among the most important factors that are responsible for this progress are the development of new statistical methods and advances in computational technology. In particular, phylogenetic analysis of DNA or protein sequences has become a powerful tool for studying molecular evolution. Along with this developing technology, the application of the new statistical and computational methods has become more complicated and there is no comprehensive volume that treats these methods in depth. Molecular Evolution and Phylogenetics fills this gap and present various statistical methods that are easily accessible to general biologists as well as biochemists, bioinformatists and graduate students. The text covers measurement of sequence divergence, construction of phylogenetic trees, statistical tests for detection of positive Darwinian selection, inference of ancestral amino acid sequences, construction of linearized trees, and analysis of allele frequency data. Emphasis is given to practical methods of data analysis, and methods can be learned by working through numerical examples using the computer program MEGA2 that is provided.