Multiscale Biomechanics


Book Description

Multiscale Biomechanics provides new insights on multiscale static and dynamic behavior of both soft and hard biological tissues, including bone, the intervertebral disk, biological membranes and tendons. The physiological aspects of bones and biological membranes are introduced, along with micromechanical models used to compute mechanical response. A modern account of continuum mechanics of growth and remodeling, generalized continuum models to capture internal lengths scales, and dedicated homogenization methods are provided to help the reader with the necessary theoretical foundations. Topics discussed include multiscale methods for fibrous media based on discrete homogenization, generalized continua constitutive models for bone, and a presentation of recent theoretical and numerical advances. In addition, a refresher on continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods is given in separate chapters. Numerical aspects are treated in detail, and simulations are presented to illustrate models. This book is intended for graduate students and researchers in biomechanics interested in the latest research developments, as well as those who wish to gain insight into the field of biomechanics. - Provides a clear exposition of multiscale methods for fibrous media based on discrete homogenization and the consideration of generalized continua constitutive models for bone - Presents recent theoretical and numerical advances for bone remodeling and growth - Includes the necessary theoretical background that is exposed in a clear and self-contained manner - Covers continuum mechanics and more advanced background related to differential geometry, configurational mechanics, mechanics of growth, thermodynamics of open systems and homogenization methods




Building Information Modeling


Book Description

BIM for Structural Engineering and Architecture Building Information Modeling: Framework for Structural Design outlines one of the most promising new developments in architecture, engineering, and construction (AEC). Building information modeling (BIM) is an information management and analysis technology that is changing the role of computation in the architectural and engineering industries. The innovative process constructs a database assembling all of the objects needed to build a specific structure. Instead of using a computer to produce a series of drawings that together describe the building, BIM creates a single illustration representing the building as a whole. This book highlights the BIM technology and explains how it is redefining the structural analysis and design of building structures. BIM as a Framework Enabler This book introduces a new framework—the structure and architecture synergy framework (SAS framework)—that helps develop and enhance the understanding of the fundamental principles of architectural analysis using BIM tools. Based upon three main components: the structural melody, structural poetry, and structural analysis, along with the BIM tools as the frame enabler, this new framework allows users to explore structural design as an art while also factoring in the principles of engineering. The framework stresses the influence structure can play in form generation and in defining spatial order and composition. By highlighting the interplay between architecture and structure, the book emphasizes the conceptual behaviors of structural systems and their aesthetic implications and enables readers to thoroughly understand the art and science of whole structural system concepts. Presents the use of BIM technology as part of a design process or framework that can lead to a more comprehensive, intelligent, and integrated building design Places special emphasis on the application of BIM technology for exploring the intimate relationship between structural engineering and architectural design Includes a discussion of current and emerging trends in structural engineering practice and the role of the structural engineer in building design using new BIM technologies Building Information Modeling: Framework for Structural Design provides a thorough understanding of architectural structures and introduces a new framework that revolutionizes the way building structures are designed and constructed.




Biomechanics


Book Description

Biomechanics is a component of Encyclopedia of Physical Sciences, Engineering and Technology Resources in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The enormous progress in the field of health sciences that has been achieved in the 19th and 20th centuries would have not been possible without the enabling interaction and support of sophisticated technologies that progressively gave rise to a new interdisciplinary field named alternatively as bioengineering or biomedical engineering. Although both terms are synonymous, the latter is less general since it limits the field of application to medicine and clinical practice, while the former covers semantically the whole field of interaction between life sciences and engineering, thus including also applications in biology, biochemistry or the many '-omics'. We use in this book the second, with more general meaning, recalling the very important relation between fundamental science and engineering. And this also recognizes the tremendous economic and social impacts of direct application of engineering in medicine that maintains the health industry as one with the fastest growth in the world economy. Biomechanics, in particular, aims to explain and predict the mechanics of the different components of living beings, from molecules to organisms as well as to design, manufacture and use of any artificial device that interacts with the mechanics of living beings. It helps, therefore, to understand how living systems move, to characterize the interaction between forces and deformation along all spatial scales, to analyze the interaction between structural behavior and microstructure, with the very important particularity of dealing with adaptive systems, able to adapt their internal structure, size and geometry to the particular mechanical environment in which they develop their activity, to understand and predict alterations in the mechanical function due to injuries, diseases or pathologies and, finally, to propose methods of artificial intervention for functional diagnosis or recovery. Biomechanics is today a very highly interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, chemists, material specialists, biologists, medical doctors, etc. They work in many different topics from a purely scientific objective to industrial applications and with an increasing arsenal of sophisticated modeling and experimental tools but always with the final objectives of better understanding the fundamentals of life and improve the quality of life of human beings. One purpose in this volume has been to present an overview of some of these many possible subjects in a self-contained way for a general audience. This volume is aimed at the following major target audiences: University and College Students, Educators, Professional Practitioners, and Research Personnel.




Transforming Growth Factors—Advances in Research and Application: 2013 Edition


Book Description

Transforming Growth Factors—Advances in Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Transforming Growth Factor alpha. The editors have built Transforming Growth Factors—Advances in Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Transforming Growth Factor alpha in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Transforming Growth Factors—Advances in Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.




Computational Modeling in Biomechanics


Book Description

Availability of advanced computational technology has fundamentally altered the investigative paradigm in the field of biomechanics. Armed with sophisticated computational tools, researchers are seeking answers to fundamental questions by exploring complex biomechanical phenomena at the molecular, cellular, tissue and organ levels. The computational armamentarium includes such diverse tools as the ab initio quantum mechanical and molecular dynamics methods at the atomistic scales and the finite element, boundary element, meshfree as well as immersed boundary and lattice-Boltzmann methods at the continuum scales. Multiscale methods that link various scales are also being developed. While most applications require forward analysis, e.g., finding deformations and stresses as a result of loading, others involve determination of constitutive parameters based on tissue imaging and inverse analysis. This book provides a glimpse of the diverse and important roles that modern computational technology is playing in various areas of biomechanics including biofluids and mass transfer, cardiovascular mechanics, musculoskeletal mechanics, soft tissue mechanics, and biomolecular mechanics.




Biomechanics of the Eye


Book Description

Covering all major components of the ocular system, this state-of-the-art text is essential for vision scientists, biomedical engineers, and advanced clinicians with an interest in the role of mechanics in ocular function, disease, therapeutics, and surgery. With every chapter, leading experts strengthen the arguments that biomechanics is an indispensable and rapidly evolving tool for understanding and managing ocular disease.




An Introduction to Biomechanics


Book Description

An Introduction to Biomechanics takes the fresh approach of combining the viewpoints of both a well-respected teacher and a successful student. With an eye toward practicality without loss of depth of instruction, this book explains the fundamental concepts of biomechanics. With the accompanying website providing models, sample problems, review questions and more, this book provides students with the full range of instructional material for this complex and dynamic field.




Biomechanics of Living Organs


Book Description

Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling is the first book to cover finite element biomechanical modeling of each organ in the human body. This collection of chapters from the leaders in the field focuses on the constitutive laws for each organ. Each author introduces the state-of-the-art concerning constitutive laws and then illustrates the implementation of such laws with Finite Element Modeling of these organs. The focus of each chapter is on instruction, careful derivation and presentation of formulae, and methods. When modeling tissues, this book will help users determine modeling parameters and the variability for particular populations. Chapters highlight important experimental techniques needed to inform, motivate, and validate the choice of strain energy function or the constitutive model. Remodeling, growth, and damage are all covered, as is the relationship of constitutive relationships of organs to tissue and molecular scale properties (as net organ behavior depends fundamentally on its sub components). This book is intended for professionals, academics, and students in tissue and continuum biomechanics. Covers hyper elastic frameworks for large tissue deformations Considers which strain energy functions are the most appropriate to model the passive and active states of living tissue Evaluates the physical meaning of proposed energy functions




Glaucoma Research and Clinical Advances 2016 to 2018


Book Description

This first volume of the New Concepts in Glaucoma series was conceived as a platform to express new ideas and approaches to understanding and solving primary open-angle glaucoma. The authors have attempted to expand levels of knowledge, present new ideas and challenge existing theories. Although the authors have painted a broad picture, the central theme of the book is to ask the right questions and seek the answers for patients with primary open-angle glaucoma.




Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes


Book Description

Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes covers new and exciting modeling methods to help bioengineers tackle problems for which the Finite Element Method is not appropriate. The book covers a wide range of important subjects in the field of numerical methods applied to biomechanics, including bone biomechanics, tissue and cell mechanics, 3D printing, computer assisted surgery and fluid dynamics. Modeling strategies, technology and approaches are continuously evolving as the knowledge of biological processes increases. Both theory and applications are covered, making this an ideal book for researchers, students and R&D professionals. - Provides non-conventional analysis methods for modeling - Covers the Discrete Element Method (DEM), Particle Methods (PM), MessLess and MeshFree Methods (MLMF), Agent-Based Methods (ABM), Lattice-Boltzmann Methods (LBM) and Boundary Integral Methods (BIM) - Includes contributions from several world renowned experts in their fields - Compares pros and cons of each method to help you decide which method is most applicable to solving specific problems