Recent advances in the design, fabrication, actuation mechanisms and applications of liquid crystal elastomers


Book Description

Liquid crystal elastomers (LCEs), as an intriguing class of soft active materials, exhibit excellent actuation performances and biocompatible properties, as well as a high degree of design flexibility, which have been of increasing interest in many disciplines. This review summarizes recent developments in this inspiring area, providing an overview of fabrication methods, design schemes, actuation mechanisms, and diverse applications of LCEs. Firstly, two-stage and one-pot synthesis methods, as well as emerging fabrication techniques (e.g., 3D/4D printing and top-down microfabrication techniques) are introduced. Secondly, the design and actuation mechanisms are discussed according to the different types of stimuli (e.g., heat, light, and electric/magnetic fields, among others). Thirdly, the representative applications are summarized, including soft robotics, temperature/strain sensors, biomedical devices, stretchable displays, and smart textiles. Finally, outlooks on the scientific challenges and open opportunities are provided.




Liquid Crystal Elastomers


Book Description

This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.




Shape Memory Alloy Actuators


Book Description

This book provides a systematic approach to realizing NiTi shape memory alloy actuation, and is aimed at science and engineering students who would like to develop a better understanding of the behaviors of SMAs, and learn to design, simulate, control, and fabricate these actuators in a systematic approach. Several innovative biomedical applications of SMAs are discussed. These include orthopedic, rehabilitation, assistive, cardiovascular, and surgery devices and tools. To this end unique actuation mechanisms are discussed. These include antagonistic bi-stable shape memory-superelastic actuation, shape memory spring actuation, and multi axial tension-torsion actuation. These actuation mechanisms open new possibilities for creating adaptive structures and biomedical devices by using SMAs.




Untethered Miniature Soft Robots


Book Description

Untethered Miniature Soft Robots Reference on achieving contactless manipulation of soft robots, detailing high level concepts and perspectives and technical skills of soft robots Untethered Miniature Soft Robots: Materials, Fabrications, and Applications introduces the emerging field of miniature soft robots and summarizes the recent rapid development in the field to date, describing different types of functional materials to build miniature soft robots, such as silicone elastomer, carbon-based materials, hydrogels, liquid crystal polymer, flexible ferrofluid, and liquid metal, and covering the material properties, fabrication strategies, and functionalities in soft robots together with their underlying mechanisms. The book discusses magnetically, thermally, optically, and chemically actuated soft robots in depth, explores the many specific applications of miniature soft robots in biomedical, environmental, and electrical fields and summarizes the development of miniature soft robots based on soft matter, fabrication strategies, locomotion principles, sensing and actuation mechanisms. In closing, the text summarizes the opportunities and challenges faced by miniature soft robots, providing expert insight into the possible futures of this field. Written by four highly qualified academics, Untethered Miniature Soft Robots covers sample topics such as: Soft elastomer-based robots with programmable magnetization profiles and untethered soft robots based on template-aiding Working mechanisms of carbon-based materials, covering light-induced expansion and shrinkage, and humidity-induced deformation Designing microscale building blocks, modular assembly of building blocks based on Denavit-Hartenberg (DH) matrix, and inverse and forward design of modular morphing systems Material designs of magnetic liquid crystal elastomers (LCE) systems, multiple-stimuli responsiveness of magnetic LCE systems, and adaptive locomotion of magnetic LCE-based robots Controllable deformation and motion behaviors, as well as applications of ferrofluids droplet robots (FDRs), including cargo capturing, object sorting, liquid pumping/mixing, and liquid skin. Providing highly detailed and up-to-date coverage of the topic, Untethered Miniature Soft Robots serves as an invaluable and highly comprehensive reference for researchers working in this promising field across a variety of disciplines, including materials scientists, mechanical and electronics engineers, polymer chemists, and biochemists.




3D Printing of Liquid Crystal Elastomer Actuators


Book Description

Soft robotics offer advantages over their rigid counterparts due to the intrinsic softness of their consisting materials, soft robotic matter. When equipped with programmable shape morphing and controllable function, soft robotics are best qualified for interaction with delicate objects, exploration of unknown terrains, and large, impact-resistant deformations. Towards this goal, new materials and fabrication methods are needed to create actuators with programmable shape- morphing behavior akin to human muscles. Liquid crystal elastomers (LCEs) are soft materials comprised of anisotropic liquid crystal mesogen molecules, which when aligned, give rise to reversible contraction with high energy density when heated above their nematic-to-isotropic transition temperature (TNI). However, the ability to produce LCE actuators with programmed director alignment in arbitrary, bulk forms is a grand challenge. The focus of my Ph.D. thesis is to create programmable LCE actuators through the integration of design, synthesis, and multi-material 3D printing methods. Towards this goal, solvent-free, oligomeric LCE inks were synthesized that incorporate rigid mesogens along their backbone as well as photopolymerizable groups at the chain ends. By varying the molecular composition of these oligomeric species, LCE inks with the appropriate viscoelastic response were designed for high operating temperature-direct ink writing (HOT-DIW), an extrusion-based 3D printing method. By tailoring polymer backbone and crosslinking chemistries of our LCE inks, their TNI could be varied from 92°C to 127°C after printing and UV cross-linking, and enable custom thermal response. We further demonstrated that patterned LCEs with programmed director alignment along the print path were produced when printing in the nematic phase. These 3D LCEs exhibit large reversible contractility and high specific energy density. Our integrated approach allows for prescribed LCE alignment in arbitrary geometric motifs. Building on this seminal advance, we created untethered soft robotic matter that repeatedly shape-morphs and self-propels in response to thermal stimuli through passive control. Specifically, we designed and printed active LCE hinges with orthogonal director alignment that interconnect rigid polymeric tiles. These hinges can be programmed as mountain or valley folds to produce reversible active origami structures. Moreover, in a single structure, we programmed hinges made of LCEs with disparate TNI to enable sequential folding and demonstrated untethered, reversible sequential folding in soft, active origami for the first time. We further demonstrated a self- compacting prism with a modular geometric locking mechanism capable of sequential folding with three temperature-specific, stable configurations. To enable the informed design of untethered robotic matter, LCE hinge bending angle and torque can be prescribed by geometry and LCE chemistry. We then exploited their exemplary performance by programming LCE hinges into the "rollbot", an exemplar self-propelling structure with passive control. Specifically, we designed a pentagonal prism with low TNI LCE hinges and propellers with high TNI LCE hinges, informed by our torque and bending angle characterization, enabling reversible reconfiguration and self- propulsion across a heated surface. To expand upon these capabilities, ewe developed a novel method of 3D printing aligned LCE filaments with embedded, coaxial liquid metal by co-extrusion of LCE and liquid metal through a core-shell nozzle. Our innervated LCE (iLCE) fibers are electrothermally heated well above TNI with programmable and predictable heat generation through the core of the filament, which resulted in large, prescriptible contractile strains akin to those of our neat 3D printed LCEs. The iLCE fibers enable self-sensing of actuation through the resulting change of resistance with respect to actuation strain, where a change of resistance is directly predictable from strain. Moreover, our iLCEs exhibited reliable reversible actuation and considerable work output, which combined with self-sensing capabilities allows for closed loop control. Specifically, our actuators automatically reach target resistance and strain values rapidly and repeatedly despite large bias load perturbations. As a final demonstration, we patterned iLCEs with a spiral printpath to demonstrate programmable 3D shape morphing. Analogous to iLCE fibers, these spiral iLCEs were electrothermally heated, exhibited self-sensing, and were regulated with closed loop control. In summary, we have developed a new platform for creating soft robotic matter through the design, synthesis, and assembly of LCE inks, which can be seamlessly integrated with structural, sensing, and functional materials. Our platform may be harnessed for applications including soft robotics, reconfigurable electronics, adaptable structures, and well beyond.




Thermally Or Optically Powered Actuation of Liquid Crystal Elastomers


Book Description

Soft actuator is a promising candidate for replacing a traditional rigid materials-based actuator when the actuating system requires human compatibility, large degree of freedom for the motion, low fabrication cost, and simple body structure. Among many soft materials, liquid crystal elastomer (LCE) is one of the most advantageous soft active material due to their large macroscopic deformability coupled with molecular level anisotropy. Patterning of LCE with precise control of molecular alignment can generate diverse actuations. In addition, different types of actuation of LCE can be induced by various external stimuli such as heat or light. In this study, we demonstrate radially patterned LCE with predesigned stretch field using a strain engineering technique which is facile, effective, and does not require any sophisticated setup. The radially patterned LCE exhibits fully reversible undulating deformation upon heating or swelling, attributed to the constrained expansion of radially patterned LCE in hoop direction. By applying the strain engineering technique, we design different LCE structures which exhibit diverse actuations like bending, rolling, crawling, or jumping. Incorporation of carbon nanotube (CNT) in the LCE allows photoresponsivity of LCE-CNT composite due to the photothermal effect of CNT. We prepare LCE-CNT rod with molecular alignment in its longitudinal direction which shows heliotropic behavior with multi-directional bending under the light irradiation rather than conventional uni- or bi-directional bending. The bending is induced by the contraction gradient of LCE-CNT rod in thickness which is maximized on the surface towards light, so the bending direction can be tuned by controlling the position of light source. Using the similar LCE or LCE-CNT rod, we show unusual rolling phenomena in which the LCE or LCE-CNT rod keeps rolling while maintaining its initial curvature in the same direction continuously induced by simply placing them on a homogeneously hot flat surface or under the visible light irradiation. Such non-intuitive autonomous rolling phenomena is induced by coupling of inhomogeneously distributed supporting force and gravity, which is triggered by continuous bending deformation of the rod during rolling. We also design a light-driven soft robot based on an arch shape LCE-CNT structure with magnet pieces on each end that performs crawling, squeezing, and jumping motions inspired by deformation traveling of inchworm locomotion and power amplification mechanism of jumping fly larva. The soft robot can perform different motions by switching its shape between arch and closed loop shape under different light irradiation modes, which enables fully reversible biomimetic motions.




Design, Fabrication, Properties and Applications of Smart and Advanced Materials


Book Description

This book introduces various advanced, smart materials and the strategies for the design and preparation for novel uses from macro to micro or from biological, inorganic, organic to composite materials. Selecting the best material is a challenging task, requiring tradeoffs between material properties and designing functional smart materials. The de




Liquid Crystal Elastomers for Actuators and Electronics


Book Description

Liquid crystal elastomers (LCEs) are well-recognized for programmable, large strain, and reversible shape changes in response to external stimuli. However, so far, there are several issues preventing the use of this class of materials in practical engineering applications such as actuators and electronics. The first part of the dissertation focuses on synthesis and processing strategies to expand capabilities of LCEs for actuator applications. Engineering application of LCEs are often limited by poor static and dynamic mechanical properties, e.g., modulus (~10 MPa), toughness (~10 MPa), blocking stress (~500 kPa), and work capacity (~300 kJ/m3 ). Also, these materials require high temperatures (typically above 100 °C) to undergo shape change. This work enables significant improvement in mechanical properties of LCEs by combining liquid crystallinity and semi-crystallinity. By developing novel synthesis and processing methods, crystallized LCEs are capable of not only enhanced static mechanical properties, including modulus (~350 MPa) and toughness (~40 MPa) but also improved dynamic mechanical properties, including blocking stress (~1.3 MPa) work capacity (~730 kJ/m3 ). This work also describes two routes to create multi-responsive LCE actuators that overcome the need to externally heat the material to high temperatures. We show high speed (~380 rpm) torsional actuation in response to chemical stimuli. Moreover, we provide a facile way to create programmed LCEs and carbon nanotubes (CNTs) composites. The LCE/CNT composites utilize visible light or electricity to trigger high-speed bending (~1 s) or uniaxial actuation (work capacity ~100 kJ/m3 , 2.5 times higher than mammalian muscles). The second part of the dissertation discusses electronic applications of LCEs. As current micro-electronic fabrication requires 2D flat substrates for photolithography processing, resulting devices are limited in 2D geometry which has minimal strain tolerance. Also, polymer-based biomedical electronics, e.g., neural interfaces, have significant issue to achieve long-term reliable encapsulation in the physiological condition. This work enables to process electronics on programmed 2D LCE substrates, then morph to desired 3D structures. The 3D electronics on LCE substrates provide strain tolerance up to 100% of deformation. We further show various examples of 3D electronics including strain tolerant capacitors and temperature sensing antenna enabled by LCE substrates. In the end, we briefly discuss current and on-going research to utilize LCEs for reliable packaging for advanced biomedical devices, e.g., deployable neural probes.




Soft Actuators


Book Description

This book is the second edition of Soft Actuators, originally published in 2014, with 12 chapters added to the first edition. The subject of this new edition is current comprehensive research and development of soft actuators, covering interdisciplinary study of materials science, mechanics, electronics, robotics, and bioscience. The book includes contemporary research of actuators based on biomaterials for their potential in future artificial muscle technology. Readers will find detailed and useful information about materials, methods of synthesis, fabrication, and measurements to study soft actuators. Additionally, the topics of materials, modeling, and applications not only promote the further research and development of soft actuators, but bring benefits for utilization and industrialization. This volume makes generous use of color figures, diagrams, and photographs that provide easy-to-understand descriptions of the mechanisms, apparatus, and motions of soft actuators. Also, in this second edition the chapters on modeling, materials design, and device design have been given a wider scope and made easier to comprehend, which will be helpful in practical applications of soft actuators. Readers of this work can acquire the newest technology and information about basic science and practical applications of flexible, lightweight, and noiseless soft actuators, which differ from conventional mechanical engines and electric motors. This new edition of Soft Actuators will inspire readers with fresh ideas and encourage their research and development, thus opening up a new field of applications for the utilization and industrialization of soft actuators.




Simulation-based Design of Temperature-responsive Nematic Elastomers


Book Description

Liquid crystal elastomers (LCEs) are a class of polymer networks which involve the incorporation of liquid crystal (LC) molecules into their polymer backbone or side chain. This results in anisotropy in their mechanical, optical, and electromagnetic properties similar to those exhibited by traditional LC materials. Their mechanical properties are highly coupled to the internal state of LC order, which can result in large mechanical deformations as LC order changes. This can occur in response to a variety of external stimuli such as changes in temperature, exposure to light, and application of external fields. The interplay between LC order and mechanical properties makes LCEs a highly promising class of functional materials and subsequently, they have been the subject of much research over the past several decades. However, developing an application of LCEs remains difficult in that their mechanical response is both complex and coupled to the state of liquid crystal order prior to cross-linking. Their physics are sufficiently complicated that in most cases, the use of pen-and-paper analysis is precluded. Additionally, the LCE fabrication process is complex and expensive, making trial-and-error experimental design methods unsuitable. This motivates the development and use of simulation-based methods to augment traditional experimental design methods. The two main contributors to the complexity of the design of LCE applications are the choice and imposition of liquid crystal order, or "texture", prior to cross-linking. In this work, simulation-based methods are developed and partially validated for use in applications-focused design of temperature-responsive nematic LCEs. These methods enable the simulation of LCEs of macroscopic size and of non-trivial geometry through the use of continuum mechanics and suitable numerical methods (the finite element method). LC texture is an input parameter in the presented method, allowing many choices of texture to be explored at low cost given that the textures are physically accessible. In addition to methods development and validation results, proof-of-concept simulation-based design studies were performed for two types of LCE-based actuators that are of current interest in the field: grippers and hinge mechanisms. Finally, preliminary results are presented resulting from the integration of nematic texture dynamics simulation (pre-cross-linking) and LCE mechanical simulations (post-cross-linking) which address the two main sources of complexity in the design process of LCE functional materials.