Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs)


Book Description

Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes (TADF-OLEDs) comprehensively introduces the history of TADF, along with a review of fundamental concepts. Then, TADF emitters with different colors, such as blue, green, red and NIR as well as white OLEDs are discussed in detail. Other sections cover exciplex-type TADF materials, emerging application of TADF emitters as a host in OLEDs, and applications of TADF materials in organic lasers and biosensing. Discusses green, blue, red, NIR and white TADF emitters and their design strategies for improved performance for light-emitting diode applications Addresses emerging materials, such as molecular and exciplex-based TADF materials Includes emerging applications like lasers and biosensors




Highly Efficient OLEDs


Book Description

Dieses Fachbuch eines Pioniers in diesem schnell wachsenden Fachbereich fasst die jüngsten Erkenntnisse zur Optimierung von OLEDs zusammen. Die Theorie wird ausführlich beschrieben, ebenso verschiedene organische und anorganische emittierende Materialien, Display- und Lichtanwendungen.




OLED Fundamentals


Book Description

A Comprehensive Source for Taking on the Next Stage of OLED R&DOLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes brings together key topics across the field of organic light-emitting diodes (OLEDs), from fundamental chemistry and physics to practical materials science and engineering aspects to design and ma




Photochromism: Molecules and Systems


Book Description

Photochromism is simply defined as the light induced reversible change of colour. The field has developed rapidly during the past decade as a result of attempts to improve the established materials and to discover new devices for applications.As photochromism bridges molecular, supramolecular and solid state chemistry, as well as organic, inorganic and physical chemistry, such a treatment requires a multidisciplinary approach and a broad presentation. The first edition (1990) provided an enormous amount of new concepts and data, such as the presentation of main families based on the pericyclic reaction mechanism, the review of new families, some bimolecular photocycloadditions and some promising systems. This new edition provides an efficient entry into this flourishing field, with the core content retained from the original work to provide a basic introduction into the different subjects. *Second edition of a work first published in 1990, now revised due to constant development of research. *Including updated lists of references (1989-2001), offering immediate access to recent developments.*Providing great basic interest and high application potential bringing scientists together from chemistry, physics and engineering.




Photoluminescent Materials and Electroluminescent Devices


Book Description

The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.




Light-Emitting Diode


Book Description

The broad vision of this book is to offer book lovers a comprehensive appraisal of topics in the global advancements of experimental facts, instrumentation, and practical applications of LED and OLED materials and their applications. The prime feature of this book is connected with LED and OLED materials approaches of fabrication, optimization limits, and their extensive technical applications. This book is comprised of seven chapters encompassing the importance of LEDs and OLEDs, the history of LEDs and OLEDs with necessary examples, the phototoxic-cum-bactericidal effect due to the usage of blue LED irradiation, DC network indoor and outdoor LED lighting, WLEDs with thermally activated delayed fluorescence emitters, tetradentate cyclometalated platinum (II) complex-based efficient organic LEDs, the impact of the use of large LED lighting loads in low-voltage networks, highly efficient OLEDs using thermally activated delayed fluorescent materials, and AlGaN deep ultraviolet LEDs. Individual chapters provide a base for the wide range of common bibliophiles in diversified fields, students, and researchers, who may conduct research pertinent to this book and will find simply explained basics as well as advanced principles of designated subjects related to these phenomena. The book was created from seven contributions from experts in the diversified fields of LED and OLED fabrication and technology from over 15 research institutes across the globe.




Light-Emitting Electrochemical Cells


Book Description

This book presents the recent achievements towards the next generation of Light-emitting electrochemical cells (LEC). Its first part focus on the definition, history and mechanism of LEC, going then to concepts and challenges and, finally, giving the reader examples of current application of new electroluminescent materials. The chapters are written by different international groups working on LEC.




Luminescence


Book Description

Luminescence - OLED Technology and Applications is a collection of reviewed and relevant research chapters offering a comprehensive overview of recent developments in the field of organic light-emitting diode (OLED) materials and devices. The book comprises chapters authored by various researchers and is edited by an expert in the field. It provides a thorough overview of the latest technologies and applications in this field and opens new possible research paths for further novel developments.




A New Generation of Organic Light-Emitting Materials and Devices


Book Description

Since the invention of the first efficient organic light-emitting diodes (OLEDs) by C. T. Tang and S. VanSlyke, OLEDs have attracted close interest as a promising candidate for next-generation full-color displays and future solid-state lighting sources because of a number of advantages like high brightness and contrast, high luminous efficiency, fast response time, wide viewing angle, low power consumption, and light weight. The recombination of holes and electrons under electrical excitation typically generates 25% singlet excitons and 75% triplet excitons. For traditional fluorescent OLEDs, only 25% singlet excitons can be utilized to emit light, while the other 75% triplet excitons are generally wasted through nonradiative transition. By adopting noble metal phosphorescent complexes, an internal quantum efficiency (IQE) of 100% could be achieved by utilizing both the 25% singlet excitons and 75% triplet excitons. However, these phosphors usually contain nonrenewable and highcost iridium or platinum noble metals. Most recently, unity IQE has been readily achieved through noble metal-free purely organic emitters, such as thermally activated delayed fluorescence (TADF) emitters, hybridized local and charge-transfer state (HLCT) “hot exciton” emitters, binary- or ternary-mixed donor-acceptor exciplex emitters, and neutral p radical emitters, etc. In addition, the combination of conventional p-type hole-transport and n-type electron-transport materials in an appropriate device structure can also provide an uncommon efficiency. Both strategies are essential and attractive for high-performance and low-cost full-color displays and white OLED applications. This Research Topic mainly focus on this new generation of organic light-emitting materials and devices, including design, synthesis, and characterization of light-emitting organic molecules with tunable excited states, and their structural, electrical, and photophysical properties. Contributions relating to carrier transporting materials and corresponding device engineering are also included. Two mini reviews and thirteen original research articles by recognized academic experts in their respective fields are collected in this Research Topic, which will offer a broad perspective of noble metal-free organic light emitters, including conventional fluorescent emitters, TADF emitters, HLCT emitters, exciplex emitters, aggregation-induced emission (AIE) luminogens, and their corresponding devices. We believe this eBook should attract the attention of multidisciplinary researchers in the fields of materials science, organic synthesis, and electronic device engineering, especially for those engaged in OLED-related areas.