Recent Development of Aerodynamic Design Methodologies


Book Description

Computational Fluid Dynamics (CFD) has made remarkable progress in the last two decades and is becoming an important, if not inevitable, analytical tool for both fundamental and practical fluid dynamics research. The analysis of flow fields is important in the sense that it improves the researcher's understanding of the flow features. CFD analysis also indirectly helps the design of new aircraft and/or spacecraft. However, design methodologies are the real need for the development of aircraft or spacecraft. They directly contribute to the design process and can significantly shorten the design cycle. Although quite a few publications have been written on this subject, most of the methods proposed were not used in practice in the past due to an immature research level and restrictions due to the inadequate computing capabilities. With the progress of high-speed computers, the time has come for such methods to be used practically. There is strong evidence of a growing interest in the development and use of aerodynamic inverse design and optimization techniques. This is true, not only for aerospace industries, but also for any industries requiring fluid dynamic design. This clearly shows the matured engineering need for optimum aerodynamic shape design methodologies. Therefore, it seems timely to publish a book in which eminent researchers in this area can elaborate on their research efforts and discuss it in conjunction with other efforts.







Lecture series


Book Description




Aerothermodynamics of Turbomachinery


Book Description

Computational Fluid Dynamics (CFD) is now an essential and effective tool used in the design of all types of turbomachine, and this topic constitutes the main theme of this book. With over 50 years of experience in the field of aerodynamics, Professor Naixing Chen has developed a wide range of numerical methods covering almost the entire spectrum of turbomachinery applications. Moreover, he has also made significant contributions to practical experiments and real-life designs. The book focuses on rigorous mathematical derivation of the equations governing flow and detailed descriptions of the numerical methods used to solve the equations. Numerous applications of the methods to different types of turbomachine are given and, in many cases, the numerical results are compared to experimental measurements. These comparisons illustrate the strengths and weaknesses of the methods – a useful guide for readers. Lessons for the design of improved blading are also indicated after many applications. Presents real-world perspective to the past, present and future concern in turbomachinery Covers direct and inverse solutions with theoretical and practical aspects Demonstrates huge application background in China Supplementary instructional materials are available on the companion website Aerothermodynamics of Turbomachinery: Analysis and Design is ideal for senior undergraduates and graduates studying in the fields of mechanics, energy and power, and aerospace engineering; design engineers in the business of manufacturing compressors, steam and gas turbines; and research engineers and scientists working in the areas of fluid mechanics, aerodynamics, and heat transfer. Supplementary lecture materials for instructors are available at www.wiley.com/go/chenturbo




Advances of CFD in Fluid Machinery Design


Book Description

In the past Computational Fluid Dynamics (CFD) was confined to large organisations capable of developing and supporting their own codes. But recently there has been a rapid increase in the availability of reasonably priced commercial codes, and many more industrial organisations are now able to routinely use CFD. Advances of CFD in Fluid Machinery Design provide the perfect opportunity to find out what industry is doing and this book addresses how CFD is now being increasingly used in the design process, rather than as a post-design analysis tool. COMPLETE CONTENTS Trends in industrial use of CFD Challenges and methodologies in the design of axial flow fans for high-bypass-ratio, gas turbine engines using steady and unsteady CFD A three-dimensional inverse method based on pressure loading for the design of turbomachinery blades Application of CFD to the design and analysis of axial and centrifugal fans and compressors The design and performance of a transonic flow deswirling system – an application of current CFD design techniques tested against model and full-scale experiments Recent developments in unsteady flow modelling for turbomachinery aeroelasticity Computational investigation of flow in casing treatments for stall delay in axial flow fans Use of CFD for the three-dimensional hydrodynamic design of vertical diffuser pumps Recommendations to designers for CFD pump impeller and diffuser simulations Three dimensional CFD – a possibility to analyse piston pump flow dynamics CFD analysis of screw compressor performance Prediction of aerothermal phenomena in high-speed discstator systems Use of CFD in the design of a shaft seal for high-performance turbomachinery Users and potential users, of CFD for the design of fluid machinery, managers, designers, and researchers working in the field of ‘industrial flows’, will all find Advances of CFD in Fluid Machinery Design a valuable volume discussing state-of-the-art developments in CFD.







Progress in Hybrid RANS-LES Modelling


Book Description

This book gathers the proceedings of the Seventh Symposium on Hybrid RANS-LES Methods, which was held on September 17-19 in Berlin, Germany. The different chapters, written by leading experts, reports on the most recent developments in flow physics modelling, and gives a special emphasis to industrially relevant applications of hybrid RANS-LES methods and other turbulence-resolving modelling approaches. The book addresses academic researchers, graduate students, industrial engineers, as well as industrial R&D managers and consultants dealing with turbulence modelling, simulation and measurement, and with multidisciplinary applications of computational fluid dynamics (CFD), such as flow control, aero-acoustics, aero-elasticity and CFD-based multidisciplinary optimization. It discusses in particular advanced hybrid RANS-LES methods. Further topics include wall-modelled Large Eddy Simulation (WMLES) methods, embedded LES, Lattice-Bolzman methods and turbulence-resolving applications and a comparison of the LES methods with both hybrid RANS-LES and URANS methods. Overall, the book provides readers with a snapshot on the state-of-the-art in CFD and turbulence modelling, with a special focus to hybrid RANS-LES methods and their industrial applications.