Silicon Anode Systems for Lithium-Ion Batteries


Book Description

Silicon Anode Systems for Lithium-Ion Batteries is an introduction to silicon anodes as an alternative to traditional graphite-based anodes. The book provides a comprehensive overview including abundance, system voltage, and capacity. It provides key insights into the basic challenges faced by the materials system such as new configurations and concepts for overcoming the expansion and contraction related problems. This book has been written for the practitioner, researcher or developer of commercial technologies. - Provides a thorough explanation of the advantages, challenge, materials science, and commercial prospects of silicon and related anode materials for lithium-ion batteries - Provides insights into practical issues including processing and performance of advanced Si-based materials in battery-relevant materials systems - Discusses suppressants in electrolytes to minimize adverse effects of solid electrolyte interphase (SEI) formation and safety limitations associated with this technology




Lithium-Sulfur Batteries


Book Description

Lithium-sulfur (Li-S) batteries provide an alternative to lithium-ion (Li-ion) batteries and are showing promise for providing much higher energy densities. Systems utilizing Li-S batteries are presently under development and early stages of commercialization. This technology is being developed in order to provide higher, safer levels of energy at significantly lower costs. Lithium-Sulfur Batteries: Advances in High-Energy Density Batteries addresses various aspects of the current research in the field of sulfur cathodes and lithium metal anode including abundance, system voltage, and capacity. In addition, it provides insights into the basic challenges faced by the system. The book includes novel strategies to prevent polysulfide dissolution in sulfur-based systems while also exploring new materials systems as anodes preventing dendrite formation in Li metal anodes. - Provides insight into the basic challenges faced by the materials system - Discusses additives and suppressants to prevent dissolution of electrolyes - Includes a review of the safety limitations associated with this technology - Incorporates a historical perspective into the development of lithium-sulfur batteries













Aerospace America


Book Description




Bringing the Future Within Reach


Book Description

The book documents Glenn's many research specialties over those 75 years. Among them are early jet engines and rockets; flight safety and fuel efficiency tested in premier icing and wind tunnels; liquid hydrogen fuel which, despite skeptics like aerospace engineer Wernher von Braun, helped the U.S. win the race to the moon; and electric propulsion, considered key to future space flight. Space enthusiasts, aviation personnel, aerospace engineers, and inventors may be interested in this comprehensive and milestone volume. Other related products: NASA at 50: Interviews With NASA\'s Senior Leadership can be found here: https: //bookstore.gpo.gov/products/sku/033-000-01360-4 Other products published by National Aeronautical and Space Administration (NASA) can be found here: https: //bookstore.gpo.gov/agency/550




Biomimicry for Aerospace


Book Description

The solutions to technical challenges posed by flight and space exploration tend to be multidimensional, multifunctional, and increasingly focused on the interaction of systems and their environment. The growing discipline of biomimicry focuses on what humanity can learn from the natural world. Biomimicry for Aerospace: Technologies and Applications features the latest advances of bioinspired materials–properties relationships for aerospace applications. Readers will get a deep dive into the utility of biomimetics to solve a number of technical challenges in aeronautics and space exploration. Part I: Biomimicry in Aerospace: Education, Design, and Inspiration provides an educational background to biomimicry applied for aerospace applications. Part II: Biomimetic Design: Aerospace and Other Practical Applications discusses applications and practical aspects of biomimetic design for aerospace and terrestrial applications and its cross-disciplinary nature. Part III: Biomimicry and Foundational Aerospace Disciplines covers snake-inspired robots, biomimetic advances in photovoltaics, electric aircraft cooling by bioinspired exergy management, and surrogate model-driven bioinspired optimization algorithms for large-scale and complex problems. Finally, Part IV: Bio-Inspired Materials, Manufacturing, and Structures reviews nature-inspired materials and processes for space exploration, gecko-inspired adhesives, bioinspired automated integrated circuit manufacturing on the Moon and Mars, and smart deployable space structures inspired by nature. - Introduces educational aspects of bio-inspired design for novel and practical technologies - Presents a series of bio-inspired technologies applicable to the field of aerospace engineering - Provides an introduction to nature-inspired design and engineering and its relevance to planning and developing the next generation of robotic and human space missions