Recent Trends in Carbohydrate Chemistry


Book Description

Carbohydrate chemistry provides access to carbohydrate-based natural products and synthetic molecules as useful biologically active structures relevant to many health care and disease-related biological processes. Recent Trends in Carbohydrate Chemistry: Synthesis, Structure, and Function of Carbohydrates covers green and sustainable reactions, organometallic carbohydrate chemistry, synthesis of glycomimetics, multicomponent reactions, and chemical transformations leading to molecular diversity based on carbohydrates. These include inhibitors of glycogen phosphorylase, which are relevant in controlling type 2 diabetes and sugar sulfates. Polysaccharides, which are commonly modified chemically, are also examined with contributions covering polysaccharide synthesis and modification of polysaccharides to obtain new structures and properties. Recent Trends in Carbohydrate Chemistry: Synthesis, Structure, and Function of Carbohydrates is ideal for researchers working as synthetic organic chemists, and for those interested in biomolecular chemistry, green chemistry, organometallic chemistry, and material chemistry in academia as well as in industry - Demonstrates the importance of carbohydrate chemistry as green and sustainable chemistry - Details monosaccharide syntheses and transformations toward biologically active small molecular entities - Provides the most recent findings on polysaccharide synthesis and bioapplications




Recent Trends in Carbohydrate Chemistry


Book Description

Carbohydrate chemistry provides access to carbohydrate-based natural products and synthetic molecules as useful biologically active structures relevant to many health care and disease-related biological processes. Recent Trends in Carbohydrate Chemistry: Synthesis, Structure, and Function of Carbohydrates covers green and sustainable reactions, organometallic carbohydrate chemistry, synthesis of glycomimetics, multicomponent reactions, and chemical transformations leading to molecular diversity based on carbohydrates. These include inhibitors of glycogen phosphorylase, which are relevant in controlling type 2 diabetes and sugar sulfates. Polysaccharides, which are commonly modified chemically, are also examined with contributions covering polysaccharide synthesis and modification of polysaccharides to obtain new structures and properties. Recent Trends in Carbohydrate Chemistry: Synthesis, Structure, and Function of Carbohydrates is ideal for researchers working as synthetic organic chemists, and for those interested in biomolecular chemistry, green chemistry, organometallic chemistry, and material chemistry in academia as well as in industry




Recent Trends in Carbohydrate Chemistry


Book Description

Recent Trends in Carbohydrate Chemistry: Synthesis and Biomedical Applications of Glycans and Glycoconjugates covers biomedically relevant bacterial cell wall carbohydrates including recent findings on biosynthetic aspects, advances in the chemical assembly of bacterial lipopolysaccharide fragments and teichoic acids, and modern NMR approaches to unravel structural details. The first part introduces and provides the relevant background for synthetic glycoconjugate vaccines. The second section focuses on synthetic carbohydrate-based vaccines of therapeutic potential that are licensed or under development. This second volume of Recent Trends in Carbohydrate Chemistry is ideal for researchers working as synthetic organic chemists, as well as those interested in glycoconjugation, protein chemists, immunologists, and microbiologists, in academia as well as in industry. - Highlights important features of bacterial glycoproteins - Illustrates modern chemical synthesis and structural analysis of bacterial glycans - Demonstrates the importance of carbohydrate chemistry for the synthesis of lipopolysaccharides and teichoic acid - Covers recent findings on glycan ligation - Gives an overview of the most recent developments on carbohydrate-based vaccines




Carbohydrate Chemistry


Book Description

Volumes in the Proven Synthetic Methods Series address the concerns many chemists have regarding irreproducibility of synthetic protocols, lack of identification and characterization data for new compounds, and inflated yields reported in chemical communications—trends that have recently become a serious problem. Featuring contributions from world-renowned experts and overseen by a highly respected series editor, Carbohydrate Chemistry: Proven Synthetic Methods, Volume 4 compiles reliable synthetic methods and protocols for the preparation of intermediates for carbohydrate synthesis or other uses in the glycosciences. Exploring carbohydrate chemistry from both the academic and industrial points of view, this unique resource brings together useful information into one convenient reference. The series is unique among other synthetic literature in the carbohydrate field in that, to ensure reproducibility, an independent checker has verified the experimental parts involved by repeating the protocols or using the methods. The book includes new or more detailed versions of previously published protocols as well as those published in not readily available journals. The essential characteristics of the protocols presented are reliability, updated characterization data for newly synthesized substances and the expectation of wide utility in the carbohydrate field. The protocols presented will be of wide use to a broad range of readers in the carbohydrate field and the life sciences, including undergraduates taking carbohydrate workshops.




Carbohydrate Chemistry


Book Description

Volumes in the Proven Synthetic Methods Series address the concerns many chemists have regarding irreproducibility of synthetic protocols, lack of characterization data for new compounds, and inflated yields reported in chemical communications-trends that have recently become a serious problem.Featuring contributions from world-renowned experts and




Carbohydrate Chemistry


Book Description

Long gone are the days when synthetic publications included parallel preparative experiments to document reproducibility of the experimental protocols and when journals required such documentation. The new Proven Synthetic Methods Series addresses concerns to chemists regarding irreproducibility of synthetic protocols, lack of characterization data for new compounds, and inflated yields reported in many chemical communications—trends that have recently become a serious problem. Volume One of Carbohydrate Chemistry: Proven Synthetic Methods includes more detailed versions of protocols previously published for the synthesis of oligosaccharides, C-glycosyl compounds, sugar nucleotides, click chemistry, thioglycosides, and thioimidates, among others. The compilation of protocols covers both common and less frequently used synthetic methods as well as examples of syntheses of selected carbohydrate intermediates with general utility. The major focus of this book is devoted to the proper practice of state-of-the-art preparative procedures, including: References to the starting materials used, reaction setup, work-up and isolation of products, followed by identification and proof of purity of the final material General information regarding convenience of operation and comments on safety issues Versatile and practically useful methods that have not received deserved, long-lasting recognition or that are difficult to access from their primary sources Copies of 1D NMR spectra of compounds prepared, showing purity of materials readers can expect Exploring carbohydrate chemistry from the academic points of view, the Carbohydrate Chemistry: Proven Synthetic Methods Series provides a compendium of preparatively useful procedures checked by chemists from independent research groups.




Functionalizing Carbohydrates for Food Applications


Book Description

How to modify and produce customized carbohydrates for foods Applications to flavor and nutrient delivery, texturizing and food quality improvement Details on designing and manufacturing carbohydrate delivery systems This book, written by leading food chemists, systematically explains the chemistry and engineering of new starch-based polymers and carbohydrates and shows how they are used to improve food texture and also to function as carriers for flavors and bioactive compounds. The book contains original investigations of strategies to modify food carbohydrates for refining product formulations and improving processing. Also included are detailed treatments of how such delivery systems are manufactured and tested. Key words: gums, encapsulation, celluloses, starches, polysaccharide, rheology, emulsion technology, bioactive, flavor delivery systems.




Biochemistry


Book Description

Biochemistry Second Edition, is a single-semester text designed for undergraduate non-biochemistry majors. Accessible, engaging, and informative, it is the perfect introduction to the subject for students who may approach chemistry with apprehension. Its unique emphasis on metabolism and its kinetic underpinnings gives the text up-to-the-minute relevance for students investigating current public health concerns, such as obesity and diabetes. Biochemistry Second Edition will encourage students to explore the basics of chemistry and its influence on biological problems. Key Features: Provides an understanding of (mostly) enzymatic reactions that are responsible for the function and maintenance of living things. This innovative text for non-biochemistry majors includes introductory material at the beginning of each chapter that contextualizes chapter themes in real-life scenarios. Online supporting materials with further opportunities for research and investigation. Synthesis questions at the end of each chapter that encourage students to make connections between concepts and ideas, as well as develop critical-thinking skills. About the Author: Raymond S. Ochs is a biochemist with a career-long specialty in metabolism spanning 30 years. Previously, he has written the textbook Biochemistry, contributed the metabolism chapters to another text, Principles of Biochemistry, and co-edited a collection of articles published as Metabolic Regulation, and the recent monograph Metabolic Strucure and Regulation. His research interests concern major pathways of liver and muscle, including glycolysis, gluconeogenesis, ureogenesis, fatty acid metabolism, glycogen metabolism, and control by cAMP, Ca2+, diacylglycerol, and AMPK. He is currently professor of pharmacy at St. John’s University in New York, teaching biochemistry, physiology, and medicinal chemistry.




Carbohydrates in Drug Discovery and Development


Book Description

Carbohydrates in Drug Discovery and Development: Synthesis and Applications examines recent and notable developments in the synthesis, biology, therapeutic, and biomedical applications of carbohydrates, which is considered to be a highly promising area of research in the field of medicinal chemistry. Their role in several important biological processes, notably energy storage, transport, modulation of protein function, intercellular adhesion, malignant transformation, signal transduction, viral, and bacterial cell surface recognition formulate the carbohydrate systems to be an exceedingly considerable scaffold for the development of new chemical entities of pharmacological importance. In addition to their easy accessibility, high functionality and chiralpool characteristics are the few additional fascinating structural features of carbohydrates, which further enhance their utilities and thus they have been able to attract chemists and biologists toward harnessing these properties for the past several decades.This book covers an advanced aspect of carbohydrate-based molecular scaffolding, starting with a general introduction followed by a detailed discussion about the impact of diverse carbohydrate-containing molecules of great therapeutic values and their impact on drug discovery and development. The topics covered in this book include the significance of heparin mimetics as the possible tools for the modulation of biology and therapy, chemistry and bioactivities of C-glycosylated compounds, inositols, iminosugars, KDO, sialic acids, glycohybrids, macrocycles, plant oligosaccharides, anti-bacterial and anti-cancer vaccines, antibiotics, and more.




Carbohydrates 2018


Book Description

This book contains original papers and reviews on carbohydrate research in medicine, authored by participants of the 29th International Carbohydrate Symposium, where this topic had a special emphasis. The focus on biological events involving carbohydrates and glycoconjugates has delivered reliable approaches for disease treatment and diagnosis. Research on carbohydrate-based compounds for therapeutic applications is illustrated in various contributions, namely those covering the development of novel agents against Alzheimer’s disease, e.g. the neuroprotective C-glucosylated flavones and the isonucleoside-based cholinesterase inhibitors. New imino sugar glucosidase inhibitors are also disclosed, a class of compounds with potential for diabetes, Gaucher disease or cancer treatment. Also the development of a useful synthetic method towards multivalent glycoclusters of biomedical interest is here highlighted. The relevance of glycomimetics in drug discovery and the progress on carbohydrates in early diagnosis and cancer treatment are reviewed. Noteworthy is the chitosan-based delivery system for drug oral administration, a new biomaterial-based approach to improve bioavailability. Another study on the conformation of Streptococcus capsular polysaccharide backbones by molecular modelling provides useful information for bacterial immunotherapeutic approaches. All original contributions and reviews clearly demonstrate the potential of glycosciences for innovation in medicinal (glyco)chemistry and pharmaceutical research.