Recent Trends in Decision Science and Management


Book Description

This book discusses an emerging field of decision science that focuses on business processes and systems used to extract knowledge from large volumes of data to provide significant insights for crucial decisions in critical situations. It presents studies employing computing techniques like machine learning, which explore decision-making for cross-platforms that contain heterogeneous data associated with complex assets, leadership, and team coordination. It also reveals the advantages of using decision sciences with management-oriented problems. The book includes a selection of the best papers presented at the 2nd International Conference on Decision Science and Management (ICDSM 2019), held at Hunan International Economics University, China, on 20–21 September 2019.




Recent Trends in Data Science and Soft Computing


Book Description

This book presents the proceedings of the 3rd International Conference of Reliable Information and Communication Technology 2018 (IRICT 2018), which was held in Kuala Lumpur, Malaysia, on July 23–24, 2018. The main theme of the conference was “Data Science, AI and IoT Trends for the Fourth Industrial Revolution.” A total of 158 papers were submitted to the conference, of which 103 were accepted and considered for publication in this book. Several hot research topics are covered, including Advances in Data Science and Big Data Analytics, Artificial Intelligence and Soft Computing, Business Intelligence, Internet of Things (IoT) Technologies and Applications, Intelligent Communication Systems, Advances in Computer Vision, Health Informatics, Reliable Cloud Computing Environments, Recent Trends in Knowledge Management, Security Issues in the Cyber World, and Advances in Information Systems Research, Theories and Methods.




Data Science in Engineering and Management


Book Description

This book brings insight into data science and offers applications and implementation strategies. It includes current developments and future directions and covers the concept of data science along with its origins. It focuses on the mechanisms of extracting data along with classifications, architectural concepts, and business intelligence with predictive analysis. Data Science in Engineering and Management: Applications, New Developments, and Future Trends introduces the concept of data science, its use, and its origins, as well as presenting recent trends, highlighting future developments; discussing problems and offering solutions. It provides an overview of applications on data linked to engineering and management perspectives and also covers how data scientists, analysts, and program managers who are interested in productivity and improving their business can do so by incorporating a data science workflow effectively. This book is useful to researchers involved in data science and can be a reference for future research. It is also suitable as supporting material for undergraduate and graduate-level courses in related engineering disciplines.




Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics


Book Description

The internet of things (IoT) has emerged to address the need for connectivity and seamless integration with other devices as well as big data platforms for analytics. However, there are challenges that IoT-based applications face including design and implementation issues; connectivity problems; data gathering, storing, and analyzing in cloud-based environments; and IoT security and privacy issues. Emerging Trends in IoT and Integration with Data Science, Cloud Computing, and Big Data Analytics is a critical reference source that provides theoretical frameworks and research findings on IoT and big data integration. Highlighting topics that include wearable sensors, machine learning, machine intelligence, and mobile computing, this book serves professionals who want to improve their understanding of the strategic role of trust at different levels of the information and knowledge society. It is therefore of most value to data scientists, computer scientists, data analysts, IT specialists, academicians, professionals, researchers, and students working in the field of information and knowledge management in various disciplines that include but are not limited to information and communication sciences, administrative sciences and management, education, sociology, computer science, etc. Moreover, the book provides insights and supports executives concerned with the management of expertise, knowledge, information, and organizational development in different types of work communities and environments.




Trends of Data Science and Applications


Book Description

This book includes an extended version of selected papers presented at the 11th Industry Symposium 2021 held during January 7–10, 2021. The book covers contributions ranging from theoretical and foundation research, platforms, methods, applications, and tools in all areas. It provides theory and practices in the area of data science, which add a social, geographical, and temporal dimension to data science research. It also includes application-oriented papers that prepare and use data in discovery research. This book contains chapters from academia as well as practitioners on big data technologies, artificial intelligence, machine learning, deep learning, data representation and visualization, business analytics, healthcare analytics, bioinformatics, etc. This book is helpful for the students, practitioners, researchers as well as industry professional.




Decision Science for Future Earth


Book Description

This open access book provides a theoretical framework and case studies on decision science for regional sustainability by integrating the natural and social sciences. The cases discussed include solution-oriented transdisciplinary studies on the environment, disasters, health, governance and human cooperation. Based on these case studies and comprehensive reviews of relevant works, including lessons learned from past failures for predictable surprises and successes in adaptive co-management, the book provides the reader with new perspectives on how we can co-design collaborative projects with various conflicts of interest and how we can transform our society for a sustainable future. The book makes a valuable contribution to the global research initiative Future Earth, promoting transdisciplinary studies to bridge the gap between science and society in knowledge generation processes and supporting efforts to achieve the UN’s Sustainable Development Goals (SDGs). Compared to other publications on transdisciplinary studies, this book is unique in that evolutionary biology is used as an integrator for various areas related to human decision-making, and approaches social changes as processes of adaptive learning and evolution. Given its scope, the book is highly recommended to all readers seeking an integrated overview of human decision-making in the context of social transformation.




Trends in Multiple Criteria Decision Analysis


Book Description

Multiple Criteria Decision Making (MCDM) is the study of methods and procedures by which concerns about multiple conflicting criteria can be formally incorporated into the management planning process. A key area of research in OR/MS, MCDM is now being applied in many new areas, including GIS systems, AI, and group decision making. This volume is in effect the third in a series of Springer books by these editors (all in the ISOR series), and it brings all the latest developments in MCDM into focus. Looking at developments in the applications, methodologies and foundations of MCDM, it presents research from leaders in the field on such topics as Problem Structuring Methodologies; Measurement Theory and MCDA; Recent Developments in Evolutionary Multiobjective Optimization; Habitual Domains and Dynamic MCDM in Changeable Spaces; Stochastic Multicriteria Acceptability Analysis; and many more chapters.




Data Science and Interdisciplinary Research: Recent Trends and Applications


Book Description

Data Science and Interdisciplinary Research: Recent Trends and Applications is a compelling edited volume that offers a comprehensive exploration of the latest advancements in data science and interdisciplinary research. Through a collection of 10 insightful chapters, this book showcases diverse models of machine learning, communications, signal processing, and data analysis, illustrating their relevance in various fields. Key Themes: Advanced Rainfall Prediction: Presents a machine learning model designed to tackle the challenging task of predicting rainfall across multiple countries, showcasing its potential to enhance weather forecasting. Efficient Cloud Data Clustering: Explains a novel computational approach for clustering large-scale cloud data, addressing the scalability of cloud computing and data analysis. Secure In-Vehicle Communication: Explores the critical topic of secure communication in in-vehicle networks, emphasizing message authentication and data integrity. Smart Irrigation 4.0: Details a decision model designed for smart irrigation, integrating agricultural sensor data reliability analysis to optimize water usage in precision agriculture. Smart Electricity Monitoring: Highlights machine learning-based smart electricity monitoring and fault detection systems, contributing to the development of smart cities. Enhanced Learning Environments: Investigates the effectiveness of mobile learning in higher education, shedding light on the role of technology in shaping modern learning environments. Coastal Socio-Economy Study: Presents a case study on the socio-economic conditions of coastal fishing communities, offering insights into the livelihoods and challenges they face. Signal Noise Removal: Shows filtering techniques for removing noise from ECG signals, enhancing the accuracy of medical data analysis and diagnosis. Deep Learning in Biomedical Research: Explores deep learning techniques for biomedical research, particularly in the realm of gene identification using Next Generation Sequencing (NGS) data. Medical Diagnosis through Machine Learning: Concludes with a chapter on breast cancer detection using machine learning concepts, demonstrating the potential of AI-driven diagnostics.




Handbook of Research on Emerging Trends and Applications of Machine Learning


Book Description

As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.




Trends and Research in the Decision Sciences


Book Description

Decision science offers powerful insights and techniques that help people make better decisions to improve business and society. This new volume brings together the peer-reviewed papers that have been chosen as the "best of the best" by the field's leading organization, the Decision Sciences Institute. These papers, authored by respected decision science researchers and academics from around the world, will be presented at DSI's 45th Annual Meeting in Tampa, Florida in November 2014. The first book of papers ever assembled by DSI, this volume describes recent methods and approaches in the decision sciences, with a special focus on how accelerating technological innovation is driving change in the ways organizations and individuals make decisions. These papers offer actionable insights for decision-makers of all kinds, in business, public policy, non-profit organizations, and beyond. They also point to new research directions for academic researchers in decision science worldwide.