Recent Trends in Dynamical Systems


Book Description

This book presents the proceedings of a conference on dynamical systems held in honor of Jürgen Scheurle in January 2012. Through both original research papers and survey articles leading experts in the field offer overviews of the current state of the theory and its applications to mechanics and physics. In particular, the following aspects of the theory of dynamical systems are covered: - Stability and bifurcation - Geometric mechanics and control theory - Invariant manifolds, attractors and chaos - Fluid mechanics and elasticity - Perturbations and multiscale problems - Hamiltonian dynamics and KAM theory Researchers and graduate students in dynamical systems and related fields, including engineering, will benefit from the articles presented in this volume.




Recent Trends In Chaotic, Nonlinear And Complex Dynamics


Book Description

In recent years, enormous progress has been made on nonlinear dynamics particularly on chaos and complex phenomena. This unique volume presents the advances made in theory, analysis, numerical simulation and experimental realization, promising novel practical applications on various topics of current interest on chaos and related fields of nonlinear dynamics.Particularly, the focus is on the following topics: synchronization vs. chaotic phenomena, chaos and its control in engineering dynamical systems, fractal-based dynamics, uncertainty and unpredictability measures vs. chaos, Hamiltonian systems and systems with time delay, local/global stability, bifurcations and their control, applications of machine learning to chaos, nonlinear vibrations of lumped mass mechanical/mechatronic systems (rigid body and coupled oscillator dynamics) governed by ODEs and continuous structural members (beams, plates, shells) vibrations governed by PDEs, patterns formation, chaos in micro- and nano-mechanical systems, chaotic reduced-order models, energy absorption/harvesting from chaotic, chaos vs. resonance phenomena, chaos exhibited by discontinuous systems, chaos in lab experiments.The present volume forms an invaluable source on recent trends in chaotic and complex dynamics for any researcher and newcomers to the field of nonlinear dynamics.




Complex Analysis and Dynamical Systems


Book Description

This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.




Recent Development In Stochastic Dynamics And Stochastic Analysis


Book Description

Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.




New Trends in Nonlinear Dynamics and Control, and their Applications


Book Description

A selection of papers exploring a wide spectrum of new trends in nonlinear dynamics and control, such as bifurcation control, state estimation and reconstruction, analysis of behavior and stabilities, dynamics of nonlinear neural network models, and numerical algorithms. The papers focus on new ideas and the latest developments in both theoretical and applied research topics of nonlinear control. Because many of the authors are leading researchers in their own fields, the papers presented in this volume reflect the state of the art in the areas of nonlinear dynamics and control. Many of the papers in this volume were first presented at the highly succesful ''Symposium on New Trends in Nonlinear Dynamics and Control, and Their Applications,'' held October 18-19, 2002, in Monterey, California.




New Trends in Nonlinear Dynamics


Book Description

This third of three volumes from the inaugural NODYCON, held at the University of Rome, in February of 2019, presents papers devoted to New Trends in Nonlinear Dynamics. The collection features both well-established streams of research as well as novel areas and emerging fields of investigation. Topics in Volume III include NEMS/MEMS and nanomaterials: multi-sensors, actuators exploiting nonlinear working principles; adaptive, multifunctional, and meta material structures; nanocomposite structures (e.g., carbon nanotube/polymer composites, composites with functionalized nanoparticles); 0D,1D,2D,3D nanostructures; biomechanics applications, DNA modeling, walking dynamics, heart dynamics, neurodynamics, capsule robots, jellyfish-like robots, nanorobots; cryptography based on chaotic maps; ecosystem dynamics, social media dynamics (user behavior dynamics in multi-messages social hotspots, prediction models), financial engineering, complexity in engineering; and network dynamics (multi-agent systems, leader-follower dynamics, swarm dynamics, biological networks dynamics).




Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals


Book Description

This book introduces the principle theories and applications of control and filtering problems to address emerging hot topics in feedback systems. With the development of IT technology at the core of the 4th industrial revolution, dynamic systems are becoming more sophisticated, networked, and advanced to achieve even better performance. However, this evolutionary advance in dynamic systems also leads to unavoidable constraints. In particular, such elements in control systems involve uncertainties, communication/transmission delays, external noise, sensor faults and failures, data packet dropouts, sampling and quantization errors, and switching phenomena, which have serious effects on the system’s stability and performance. This book discusses how to deal with such constraints to guarantee the system’s design objectives, focusing on real-world dynamical systems such as Markovian jump systems, networked control systems, neural networks, and complex networks, which have recently excited considerable attention. It also provides a number of practical examples to show the applicability of the presented methods and techniques. This book is of interest to graduate students, researchers and professors, as well as R&D engineers involved in control theory and applications looking to analyze dynamical systems with constraints and to synthesize various types of corresponding controllers and filters for optimal performance of feedback systems.




Current Trends in Dynamical Systems in Biology and Natural Sciences


Book Description

This book disseminates the latest results and envisages new challenges in the application of mathematics to various practical situations in biology, epidemiology, and ecology. It comprises a collection of the main results presented at the Ninth Edition of the International Workshop “Dynamical Systems Applied to Biology and Natural Sciences – DSABNS”, held from 7 to 9 February 2018 at the Department of Mathematics, University of Turin, Italy. While the principal focus is ecology and epidemiology, the coverage extends even to waste recycling and a genetic application. The topics covered in the 12 peer-reviewed contributions involve such diverse mathematical tools as ordinary and partial differential equations, delay equations, stochastic equations, control, and sensitivity analysis. The book is intended to help both in disseminating the latest results and in envisaging new challenges in the application of mathematics to various practical situations in biology, epidemiology, and ecology.




New Trends in One-Dimensional Dynamics


Book Description

This volume presents the proceedings of the meeting New Trends in One-Dimensional Dynamics, which celebrated the 70th birthday of Welington de Melo and was held at the IMPA, Rio de Janeiro, in November 2016. Highlighting the latest results in one-dimensional dynamics and its applications, the contributions gathered here also celebrate the highly successful meeting, which brought together experts in the field, including many of Welington de Melo’s co-authors and former doctoral students. Sadly, Welington de Melo passed away shortly after the conference, so that the present volume became more a tribute to him. His role in the development of mathematics was undoubtedly an important one, especially in the area of low-level dynamics, and his legacy includes, in addition to many articles with fundamental contributions, books that are required reading for all newcomers to the field.




New Trends In Dynamic Systems Theory And Economics


Book Description

New Trends in Dynamic System Theory and Economics contains selected papers presented at a two-week seminar on New Trends in Dynamic System Theory and Economics held at the International Center for Mechanical Sciences in Udine, Italy, on September 12-23, 1977. Contributors discuss recent trends in the application of dynamic system theory in economic analysis, paying particular attention to information patterns and uncertainty, optimal control theory and its application, and disequilibrium analysis. This book is divided into three sections and consists of 20 chapters. Decision problems of agents with different or imperfect information or under uncertainty are first discussed. This section gives a detailed analysis of the properties of Nash and Stackelberg equilibria in dynamic games under several different information patterns. Consideration is also given to microdecision problems of individual agents, macroeconomic stabilization of an uncertain dynamic economy, and the uncertainty of parameter values. The chapters that follow focus on recent advances in optimal control theory and application of control theory. Disequilibrium analysis of a macroeconomic model is presented, along with the dynamics of disequilibria of a macroeconomic model with flexible wages and prices. A generalization of Pareto optimality is used to discuss the connection between the optimality and stability problems in a general setting. The last three chapters explore ""modern"" approaches to tâtonnement processes. This book will be of interest to students and practitioners of applied mathematics and econometrics.