Recent Trends in Fractional Calculus and Its Applications


Book Description

Recent Trends in Fractional Calculus and Its Applications addresses the answer to this very basic question: "Why is Fractional Calculus important?" Until recent times, Fractional Calculus was considered as a rather esoteric mathematical theory without applications, but in the last few decades there has been an explosion of research activities on the application of Fractional Calculus to very diverse scientific fields ranging from the physics of diffusion and advection phenomena, to control systems to finance and economics. An important part of mathematical modelling of objects and processes is a description of their dynamics. The term Fractional Calculus is more than 300 years old. It is a generalization of the ordinary differentiation and integration to noninteger (arbitrary) order. The subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented this kind of calculation. Several mathematicians contributed to this subject over the years. People like Liouville, Riemann, and Weyl made major contributions to the theory of Fractional Calculus. In recent decades the field of Fractional Calculus has attracted the interest of researchers in several areas, including mathematics, physics, chemistry, engineering, finance, and social sciences. Provides the most recent and up-to-date developments in the Fractional Calculus and its application areas Presents pre-preparation ideas to help researchers/scientists/clinicians face the new challenges in the application of fractional differential equations Helps researchers and scientists understand the importance of the Fractional Calculus to solve many problems in Biomedical Engineering and applied sciences




New Trends in Nanotechnology and Fractional Calculus Applications


Book Description

In recent years fractional calculus has played an important role in various fields such as mechanics, electricity, chemistry, biology, economics, modeling, identification, control theory and signal processing. The scope of this book is to present the state of the art in the study of fractional systems and the application of fractional differentiation. Furthermore, the manufacture of nanowires is important for the design of nanosensors and the development of high-yield thin films is vital in procuring clean solar energy. This wide range of applications is of interest to engineers, physicists and mathematicians.







New Trends in Fractional Differential Equations with Real-World Applications in Physics


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.




Fractional Calculus with its Applications in Engineering and Technology


Book Description

This book aims to provide the basic theory of fractional calculus and its applications based on practical schemes and approaches, illustrated with applicable engineering and technical examples, especially focusing on the fractional-order controller design. In the development of this book, the essential theorems and facts in the first two chapters are proven with rigorous mathematical analyses. In addition, the commonly used definitions of Grünwald-Letnikov, Riemann-Liouville, Caputo, and Miller-Ross fractional derivatives are introduced with their properties proved and linked to fractional-order controller design. The last chapter presents several enlightening scenarios of fractional-order control designs, for example, the suppression of machining chatter, the nonlinear motion control of a multilink robot, the simultaneous tracking and stabilization control of a rotary inverted pendulum, and the idle speed control of an internal combustion engine (ICE).




Fractional Order Analysis


Book Description

A guide to the new research in the field of fractional order analysis Fractional Order Analysis contains the most recent research findings in fractional order analysis and its applications. The authors—noted experts on the topic—offer an examination of the theory, methods, applications, and the modern tools and techniques in the field of fractional order analysis. The information, tools, and applications presented can help develop mathematical methods and models with better accuracy. Comprehensive in scope, the book covers a range of topics including: new fractional operators, fractional derivatives, fractional differential equations, inequalities for different fractional derivatives and fractional integrals, fractional modeling related to transmission of Malaria, and dynamics of Zika virus with various fractional derivatives, and more. Designed to be an accessible text, several useful, relevant and connected topics can be found in one place, which is crucial for an understanding of the research problems of an applied nature. This book: Contains recent development in fractional calculus Offers a balance of theory, methods, and applications Puts the focus on fractional analysis and its interdisciplinary applications, such as fractional models for biological models Helps make research more relevant to real-life applications Written for researchers, professionals and practitioners, Fractional Order Analysis offers a comprehensive resource to fractional analysis and its many applications as well as information on the newest research.




Fractional Calculus and Fractional Differential Equations


Book Description

This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.




Advances in Special Functions of Fractional Calculus: Special Functions in Fractional Calculus and Their Applications in Engineering


Book Description

In recent years, special functions have been developed and applied in a variety of fields, such as combinatorics, astronomy, applied mathematics, physics, and engineering due to their remarkable properties. This volume expands our understanding of special functions by highlighting recent trends in numerical analysis. Interesting applications of special functions and partial differential equations are demonstrated by 15 chapters. Many chapters highlight the importance of numerical techniques and the results of complex analysis. Contributions in the book emphasize the mathematical treatment of questions arising in natural sciences and engineering, particularly those that involve novel problems and their solutions. This volume is a timely update for mathematicians and researchers interested in advanced numerical methods and computational techniques used to solve complex problems List of Chapters 1. Modified Adaptive Synchronization and Anti Synchronization method for Fractional order chaotic systems with uncertain parameters 2. Improved generalized differential transform method for a class of linear non homogeneous ordinary fractional differential equation 3. Incomplete K2-Function 4. Some Results On Incomplete Hypergeometric Functions 5. Transcendental Bernstein Series: Interpolation and Approximation 6. Some Sufficient Conditions For Uniform Convexity Of Normalized 1F2 Function 7. From Abel continuity theorem to Paley-Wiener theorem… 8. A New Class of Truncated Exponential-Gould-Hopper basedGenocchi Polynomials 9. Computational preconditioned Gauss-Seidel via half-sweep approximation to Caputo's time fractional differential equations 10. Krasnoselskii-type Theorems for Monotone Operators in Ordered Banach Algebra with Applications in Fractional Differential Equations and Inclusion 11. General fractional order quadratic functional integral equations: Existence, properties of solutions and some of its Applications 12.Nonlinear set-valued delay functional integral equations of Volterra-Stieltjes type: Existence of solutions, continuous dependence and applications 13.Certain Saigo Fractional Derivatives Of Extended Hypergeometric Functions 14. Some Erdelyi-kober Fractional Integrals Of The Extended Hypergeometric Functions 15. On solutions of Kinetic Model by Sumudu transform




Fractional Calculus: New Applications in Understanding Nonlinear Phenomena


Book Description

In the last two decades, many new fractional operators have appeared, often defined using integrals with special functions in the kernel as well as their extended or multivariable forms. Modern operators in fractional calculus have different properties which are comparable to those of classical operators.These have been intensively studied formodelling and analysing real-world phenomena. There is now a growing body of research on new methods to understand natural occurrences and tackle different problems. This book presents ten reviews of recent fractional operators split over three sections: 1. Chaotic Systems and Control (covers the Caputo fractional derivative, and a chaotic fractional-order financial system)2. Heat Conduction (covers the Duhamel theorem for time-dependent source terms, and the Cattaneo–Hristov model for oscillatory heat transfer)3. Computational Methods and Their Illustrative Applications (covers mathematical analysis for understanding 5 real-word phenomena: HTLV-1 infection of CD4+ T-cells, traveling waves, rumor-spreading, biochemical reactions, and the computational fluid dynamics of a non-powered floating object navigating in an approach channel) This volume is a resource for researchers in physics, biology, behavioral sciences, and mathematics who are interested in new applications of fractional calculus in the study of nonlinear phenomena.




Fractional Differential Equations


Book Description

This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.