Anion Recognition in Supramolecular Chemistry


Book Description

Brett M. Rambo ∙ Eric S. Silver ∙ Christopher W. Bielawski ∙ Jonathan L. Sessler Covalent Polymers Containing Discrete Heterocyclic Anion Receptors Philip A. Gale ∙ Chang-Hee Lee Calix[n]pyrroles as Anion and Ion-Pair Complexants Wim Dehaen Calix[n]phyrins: Synthesis and Anion Recognition Hiromitsu Maeda Acyclic Oligopyrrolic Anion Receptors Jeffery T. Davis Anion Binding and Transport by Prodigiosin and Its Analogs Hemraj Juwarker ∙ Jae-min Suk ∙ Kyu-Sung Jeong Indoles and Related Heterocycles Pavel Anzenbacher Jr. Pyrrole-Based Anion Sensors, Part I: Colorimetric Sensors Pavel Anzenbacher Jr. Pyrrole-Based Anion Sensors, Part II: Fluorescence, Luminescence, and Electrochemical Sensors Ermitas Alcalde ∙ Immaculada Dinarès ∙ Neus Mesquida Imidazolium-Based Receptors Nathan L. Kilah ∙ Paul D. Beer Pyridine and Pyridinium-Based Anion Receptors Kevin P. McDonald ∙ Yuran Hua ∙ Amar H. Flood 1,2,3-Triazoles and the Expanding Utility of Charge Neutral CHlllAnion Interactions




Anion Receptor Chemistry


Book Description

Anion recognition plays a critical role in a range of biological processes, and a variety of receptors and carriers can be found throughout the natural world. Chemists working in the area of supramolecular chemistry have created a range of anion receptors, drawing inspiration from nature as well as their own inventive processes. This book traces the origins of anion recognition chemistry as a unique sub-field in supramolecular chemistry while illustrating the basic approaches currently being used to effect receptor design. The combination of biological overview and summary of current synthetic approaches provides a coverage that is both comprehensive and comprehensible. First, the authors detail the key design motifs that have been used to generate synthetic receptors and which are likely to provide the basis for further developments. They also highlight briefly some of the features that are present in naturally occurring anion recognition and transport systems and summarise the applications of anion recognition chemistry. Providing as it does a detailed review for practitioners in the field and a concise introduction to the topic for newcomers, Anion Receptor Chemistry reflects the current state of the art. Fully referenced and illustrated in colour, it is a welcome addition to the literature.




Anion Sensing


Book Description

with contributions by numerous experts




Recognition of Anions


Book Description

This book presents critical reviews of the present position and future trends in modern chemical research concerned with chemical structure and bonding. The book contains short and concise reports, each written by the world's renowned experts.




Anion Coordination Chemistry


Book Description

Building on the pioneering work in supramolecular chemistry from the last 20 years or so, this monograph addresses new and recent approaches to anion coordination chemistry. Synthesis of receptors, biological receptors and metallareceptors, the energetics of anion binding, molecular structures of anion complexes, sensing devices are presented and computational studies addressed to aid with the understanding of the different driving forces responsible for anion complexation. The reader is promised an actual picture of the state of the art for this exciting and constantly evolving field of supramolecular anion coordination chemistry. The topics range from ion channels to selective sensors, making it attractive to all researchers and PhD students with an interest in supramolecular chemistry.




Anion-Binding Catalysis


Book Description

Explores the potential of new types of anion-binding catalysts to solve challenging synthetic problems Anion-Binding Catalysis introduces readers to the use of anion-binding processes in catalytic chemical activation, exploring how this approach can contribute to the future design of novel synthetic transformations. Featuring contributions by world-renowned scientists in the field, this authoritative volume describes the structure, properties, and catalytic applications of anions as well as synthetic applications and practical analytical methods. In-depth chapters are organized by type of catalyst rather than reaction type, providing readers with an accessible overview of the existing classes of effective catalysts. The authors discuss the use of halogens as counteranions, the combination of (thio)urea and squaramide-based anion-binding with other types of organocatalysis, anion-binding catalysis by pnictogen and tetrel bonding, nucleophilic co-catalysis, anion-binding catalysis by pnictogen and tetrel bonding, and more. Helping readers appreciate and evaluate the potential of anion-binding catalysis, this timely book: Illustrates the historical development, activation mode, and importance of anion-binding in chemical catalysis Explains the analytic methods used to determine the anion-binding affinity of the catalysts Describes catalytic and synthetic applications of common NH- and OH-based hydrogen-donor catalysts as well as C-H triazole/triazolium catalysts Covers amino-catalysis involving enamine, dienamine, or iminium activation approaches Discusses new trends in the field of anion-binding catalysis, such as the combination of anion-binding with other types of catalysis Presenting the current state of the field as well as the synthetic potential of anion-binding catalysis in future, Anion-Binding Catalysis is essential reading for researchers in both academia and industry involved in organic synthesis, homogeneous catalysis, and pharmaceutical chemistry.




Supramolecular Chemistry of Anions


Book Description

Despite the central role anionic species have been shown to play in both mineralogical and biological processes, until now there have been no comprehensive references dealing exclusively with anionic coordination chemistry. Written by a group comprising pioneering researchers from the United States and Europe, Supramolecular Chemistry of Anions covers all theoretical and practical aspects of anion complexation, from thermodynamics and structure to catalysis and various applications. The authors begin with the 1967 discovery of halide inclusion by bicyclic diammonium receptors and trace the development of anion coordination chemistry through the most recent developments in the field. Topics covered in detail include: * Pre-supramolecular anion chemistry * Natural and artificial molecules that can act as anion receptors * Preorganization and chemical design * Structural, thermodynamic, electrochemical, and photochemical aspects of anion coordination * Computer methods for receptor design and multiple host-guest relations * Anion receptor catalysis and molecular recognition and transformation of nucleotides Supramolecular Chemistry of Anions is a valuable professional resource for organic and inorganic chemists, analytical chemists, biotechnologists, pharmaceutical scientists, and environmental chemists. It also serves as an excellent graduate-level text for students of molecular recognition, catalysis, and biomimetic chemistry.




Chemosensors of Ion and Molecule Recognition


Book Description

The design and use of chemosensors for ion and molecule recognition - a branch of supramolecular chemistry - have developed at an extraordinary rate. This imaginative and creative area involves work at the interface of organic and inorganic chemistry, physical chemistry, biology, medicine and environmental science and is providing new sensors based on the specific signal delivered by the analyte-probe reaction. The emergence of efficient fluorescent receptors has allowed the detection, identification, and even titration of, for example, heavy metal or radionuclide pollutants. Further, with sensors displaying specific and strong complexation properties, such materials could be detected and removed at very low concentrations. Further, among other species of biological interest, sugars, oxygen and carbon dioxide can actually be probed with optodes and similar devices. This is clearly just the beginning of a very promising line of research. Audience: Organic chemists interested in creating new chemosensors, as well as the many potential end users of such sensors.




Supramolecular Chemistry in Water


Book Description

Provides deep insight into the concepts and recent developments in the area of supramolecular chemistry in water Written by experts in their respective field, this comprehensive reference covers various aspects of supramolecular chemistry in water?from fundamental aspects to applications. It provides readers with a basic introduction to the current understanding of the properties of water and how they influence molecular recognition, and examines the different receptor types available in water and the types of substrates that can be bound. It also looks at areas to where they can be applied, such as materials, optical sensing, medicinal imaging, and catalysis. Supramolecular Chemistry in Water offers five major sections that address important topics like water properties, molecular recognition, association and aggregation phenomena, optical detection and imaging, and supramolecular catalysis. It covers chemistry and physical chemistry of water; water-mediated molecular recognition; peptide and protein receptors; nucleotide receptors; carbohydrate receptors; and ion receptors. The book also teaches readers all about coordination compounds; self-assembled polymers and gels; foldamers; vesicles and micelles; and surface-modified nanoparticles. In addition, it provides in-depth information on indicators and optical probes, as well as probes for medical imaging. -Covers, in a timely manner, an emerging area in chemistry that is growing more important every day -Addresses topics such as molecular recognition, aggregation, catalysis, and more -Offers comprehensive coverage of everything from fundamental aspects of supramolecular chemistry in water to its applications -Edited by one of the leading international scientists in the field Supramolecular Chemistry in Water is a one-stop-resource for all polymer chemists, catalytic chemists, biochemists, water chemists, and physical chemists involved in this growing area of research.




Boron-Based Compounds


Book Description

Noted experts review the current status of boron-containing drugs and materials for molecular medical diagnostics Boron-Based Compounds offers a summary of the present status and promotes the further development of new boron-containing drugs and advanced materials, mostly boron clusters, for molecular medical diagnostics. The knowledge accumulated during the past decades on the chemistry and biology of bioorganic and organometallic boron compounds laid the foundation for the emergence of a new area of study and application of boron compounds as lipophilic pharmacophores and modulators of biologically active molecules.This important text brings together in one comprehensive volume contributions from renowned experts in the field of medicinal chemistry of boron compounds. The authors cover a range of the most relevant topics including boron compounds as modulators of the bioactivity of biomolecules, boron clusters as pharmacophores or for drug delivery, boron compounds for boron neutron capture therapy (BNCT) and for diagnostics, as well as in silico molecular modeling of boron- and carborane-containing compounds in drug design. Authoritative and accessible, Boron-Based Compounds: Contains contributions from a panel of internationally renowned experts in the field Offers a concise summary of the current status of boron-containing drugs and materials used for molecular diagnostics Highlights the range and capacity of boron-based compounds in medical applications Includes information on boron neutron capture therapy and diagnostics Designed for academic and industrial scientists, this important resource offers the cutting-edge information needed to understand the current state of boron-containing drugs and materials for molecular medical diagnostics.