Pattern Recognition


Book Description

'Part-detective story, part-cultural snapshot . . . all bound by Gibson's pin-sharp prose' Arena -------------- THE FIRST NOVEL IN THE BLUE ANT TRILIOGY - READ ZERO HISTORY AND SPOOK COUNTRY FOR MORE Cayce Pollard has a new job. She's been offered a special project: track down the makers of an addictive online film that's lighting up the internet. Hunting the source will take her to Tokyo and Moscow and put her in the sights of Japanese hackers and Russian Mafia. She's up against those who want to control the film, to own it - who figure breaking the law is just another business strategy. The kind of people who relish turning the hunter into the hunted . . . A gripping spy thriller by William Gibson, bestselling author of Neuromancer. Part prophesy, part satire, Pattern Recognition skewers the absurdity of modern life with the lightest and most engaging of touches. Readers of Neal Stephenson, Ray Bradbury and Iain M. Banks won't be able to put this book down. -------------- 'Fast, witty and cleverly politicized' Guardian 'A big novel, full of bold ideas . . . races along like an expert thriller' GQ 'Dangerously hip. Its dialogue and characterization will amaze you. A wonderfully detailed, reckless journey of espionage and lies' USA Today 'A compelling, humane story with a sympathetic heroine searching for meaning and consolation in a post-everything world' Daily Telegraph 'Electric, profound. Gibson's descriptions of Tokyo, Russia and London are surreally spot-on' Financial Times




Pattern Recognition


Book Description

Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest




Introduction to Statistical Pattern Recognition


Book Description

This completely revised second edition presents an introduction to statistical pattern recognition. Pattern recognition in general covers a wide range of problems: it is applied to engineering problems, such as character readers and wave form analysis as well as to brain modeling in biology and psychology. Statistical decision and estimation, which are the main subjects of this book, are regarded as fundamental to the study of pattern recognition. This book is appropriate as a text for introductory courses in pattern recognition and as a reference book for workers in the field. Each chapter contains computer projects as well as exercises.




The Phantom Pattern Problem


Book Description

We have all been bred to be fooled, to be attracted to shiny patterns and glittery correlations. Big data and powerful computers feed this addiction because they make it so easy to find such baubles-and they also ensure that most of what we find is rubbish. It is up Lo us to resist the allure, to not be fooled by phantom pattern. Book jacket.




Dissimilarity Representation For Pattern Recognition, The: Foundations And Applications


Book Description

This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition.Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and integrate by machine learning procedures. However, if the relations are captured by sets of dissimilarities, general data analysis procedures may be applied for analysis.With their detailed description of an unprecedented approach absent from traditional textbooks, the authors have crafted an essential book for every researcher and systems designer studying or developing pattern recognition systems.




Handbook Of Pattern Recognition And Computer Vision (2nd Edition)


Book Description

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.




Pattern Formation by Dynamic Systems and Pattern Recognition


Book Description

This book contains the manuscripts of the papers delivered at the International Sym posium on Synergetics held at SchloB Elmau, Bavaria, Germany, from April 30 until May 5, 1979. This conference followed several previous ones (Elmau 1972, Sicily 1974, Elmau 1977). This time the subject of the symposium was "pattern formation by dynam ic systems and pattern recognition". The meeting brought together scientists from such diverse fields as mathematics, physics, chemistry, biology, history as well as experts in the fields of pattern recognition and associative memory. When I started this type of conference in 1972 it appeared to be a daring enter prise. Indeed, we began to explore virgin land of science: the systematic study of cooperative effects in physical systems far from equi~ibrium and in other disciplines. Though these meetings were attended by scientists from quite different disciplines, a basic concept and even a common language were found from the very beginning. The idea that there exist profound analogies in the behaviour of large classes of complex systems, though the systems themselves may be quite different, proved to be most fruitful. I was delighted to see that over the past one or two years quite similar conferences were now held in various places allover the world. The inclusion of prob lems of pattern recognition at the present meeting is a novel feature, however.




Supervised and Unsupervised Pattern Recognition


Book Description

There are many books on neural networks, some of which cover computational intelligence, but none that incorporate both feature extraction and computational intelligence, as Supervised and Unsupervised Pattern Recognition does. This volume describes the application of a novel, unsupervised pattern recognition scheme to the classification of various types of waveforms and images. This substantial collection of recent research begins with an introduction to Neural Networks, classifiers, and feature extraction methods. It then addresses unsupervised and fuzzy neural networks and their applications to handwritten character recognition and recognition of normal and abnormal visual evoked potentials. The third section deals with advanced neural network architectures-including modular design-and their applications to medicine and three-dimensional NN architecture simulating brain functions. The final section discusses general applications and simulations, such as the establishment of a brain-computer link, speaker identification, and face recognition. In the quickly changing field of computational intelligence, every discovery is significant. Supervised and Unsupervised Pattern Recognition gives you access to many notable findings in one convenient volume.




Statistical Pattern Recognition


Book Description

Statistical pattern recognition is a very active area of study andresearch, which has seen many advances in recent years. New andemerging applications - such as data mining, web searching,multimedia data retrieval, face recognition, and cursivehandwriting recognition - require robust and efficient patternrecognition techniques. Statistical decision making and estimationare regarded as fundamental to the study of pattern recognition. Statistical Pattern Recognition, Second Edition has been fullyupdated with new methods, applications and references. It providesa comprehensive introduction to this vibrant area - with materialdrawn from engineering, statistics, computer science and the socialsciences - and covers many application areas, such as databasedesign, artificial neural networks, and decision supportsystems. * Provides a self-contained introduction to statistical patternrecognition. * Each technique described is illustrated by real examples. * Covers Bayesian methods, neural networks, support vectormachines, and unsupervised classification. * Each section concludes with a description of the applicationsthat have been addressed and with further developments of thetheory. * Includes background material on dissimilarity, parameterestimation, data, linear algebra and probability. * Features a variety of exercises, from 'open-book' questions tomore lengthy projects. The book is aimed primarily at senior undergraduate and graduatestudents studying statistical pattern recognition, patternprocessing, neural networks, and data mining, in both statisticsand engineering departments. It is also an excellent source ofreference for technical professionals working in advancedinformation development environments. For further information on the techniques and applicationsdiscussed in this book please visit ahref="http://www.statistical-pattern-recognition.net/"www.statistical-pattern-recognition.net/a




Introduction to Pattern Recognition


Book Description

Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. - Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition - Solved examples in Matlab, including real-life data sets in imaging and audio recognition - Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)