Ground Anchorages and Anchored Structures


Book Description

This volume presents the proceedings of the first major international conference for over twenty years on the state-of-the-art of ground anchorage technology. Practical issues relating to construction and installation of anchorages are considered in a series of examples of engineering projects from around the world.







Anchoring in Rock and Soil


Book Description

Anchoring in Rock and Soil







Design and construction of prestressed ground anchorages


Book Description




Ground Anchors and Anchored Systems


Book Description

This book presents state-of-the-practice information on the design and installation of cement-grouted ground anchors and anchored systems for highway applications. The anchored systems discussed include flexible anchored walls, slopes supported using ground anchors, landslide stabilization systems, and structures that incorporate tiedown anchors. This book draws extensively in describing issues such as subsurface investigation and laboratory testing, basic anchoring principles, ground anchor load testing, and inspection of construction materials and methods used for anchored systems. This book provides detailed information on design analyses for ground anchored systems. Topics discussed include selection of design earth pressures, ground anchor design, design of corrosion protection system for ground anchors, design of wall components to resist lateral and vertical loads, evaluation of overall anchored system stability, and seismic design of anchored systems. Also included in this book are two detailed design examples and technical specifications for ground anchors and for anchored walls.




Foundation Engineering Handbook


Book Description

More than ten years have passed since the first edition was published. During that period there have been a substantial number of changes in geotechnical engineering, especially in the applications of foundation engineering. As the world population increases, more land is needed and many soil deposits previously deemed unsuitable for residential housing or other construction projects are now being used. Such areas include problematic soil regions, mining subsidence areas, and sanitary landfills. To overcome the problems associated with these natural or man-made soil deposits, new and improved methods of analysis, design, and implementation are needed in foundation construction. As society develops and living standards rise, tall buildings, transportation facilities, and industrial complexes are increasingly being built. Because of the heavy design loads and the complicated environments, the traditional design concepts, construction materials, methods, and equipment also need improvement. Further, recent energy and material shortages have caused additional burdens on the engineering profession and brought about the need to seek alternative or cost-saving methods for foundation design and construction.




Specialty Construction Techniques for Dam and Levee Remediation


Book Description

Dam and levee remediation has become more prevalent since the start of the twenty-first century. Given the vastness and complexity of the infrastructures involved, keeping up with maintenance needs is very difficult. Major surges in repair are usually triggered by nature‘s wake-up calls, such as hurricanes, floods, and earthquakes. The challenge ha




Specialty Construction Techniques for Dam and Levee Remediation


Book Description

Dam and levee remediation has become more prevalent since the start of the twenty-first century. Given the vastness and complexity of the infrastructures involved, keeping up with maintenance needs is very difficult. Major surges in repair are usually triggered by nature’s wake-up calls, such as hurricanes, floods, and earthquakes. The challenge has been to develop methods that ensure safe, effective, reliable, and robust solutions for current and future remediation issues. Specialty Construction Techniques for Dam and Levee Remediation presents the state of practice in North American dam and levee remediation as it relates to the use of specialty geotechnical construction techniques, such as anchors, grouting, cutoff (diaphragm) walls, and deep mixing. The book focuses on the actual construction processes, describing design and performance aspects of remediation where appropriate. Chapters deal with the application of drilling and grouting methods, methods to install mix-in-place (category 2) cutoff structures, excavated and backfilled trenches (category 1), composite cutoff walls, and stabilization using prestressed rock anchors. The book also provides a comprehensive guide to dam and levee instrumentation, covering planning, operating principles, data management, staffing, and automation. As an educational and salutary example of ineffective efforts, the final chapter presents a case history of a series of remediations performed on a single project, which ultimately proved unsuccessful. A wide range of methods has been developed in response to the challenges that arise in the dam and levee remediation arena and the need for a competitive edge. These new methods are designed and monitored using state-of-the-art techniques, giving rise to the emergence of new intensity and initiative in this field. This book captures this transformation by examining the theory and practice of contemporary remedial techniques, using recent U.S. case histories to provide knowledge and inspiration to readers, both in North America and around the world.




Ground Anchors and Anchored Structures


Book Description

Treating anchorages as a direct application of the laws of statics and the theories governing the transfer of load, this book focuses on designs that are safe and reasonably priced. It is divided into two parts. Following a general introduction in the first chapter, Part One goes on to explore anchor systems, components, installation and construction details. Presents special anchor systems such as extractable, compression-type, multibell, and regroutable anchors. Analyzes the transfer of load and its relation to failure modes and anchor load capacity; deals with design considerations; covers mechanisms and types of corrosion; and details anchor stressing, testing programs, and evaluation standards. Part Two considers uses and applications and design aspects of anchored structures; presents design examples of practical value and reasonable simplicity; and incorporates examples and case histories.