Recrystallization in Materials Processing


Book Description

The book Recrystallization in Materials Processing shows selected results obtained during the last few years by researchers worked on recrystallization-related issues. These researchers offer their knowledge from a range of scientific disciplines, such as materials science, metallurgy and pharmacology. The authors emphasize that the progress in this particular field of scientific research is possible today due to coordinated efforts of many research groups that work in materials science, chemistry, physics, pharmacology, and other sciences. Thus, it is possible to perform a detailed analysis of the scientific problem. The analysis starts from the selection of appropriate techniques and methods of characterization. It is then combined with the development of new tools in diagnostics, and it finished with physical modeling of phenomena.




Recrystallization and Related Annealing Phenomena


Book Description

The annealing of deformed materials is of both technological importance and scientific interest. The phenomena have been most widely studied in metals, although they occur in all crystalline materials such as the natural deformation of rocks and the processing of technical ceramics. Research is mainly driven by the requirements of industry, and where appropriate, the book discusses the extent to which we are able to formulate quantitative, physically-based models which can be applied to metal-forming processes. The subjects treated in this book are all active research areas, and form a major part of at least four regular international conference series. However, there have only been two monographs published in recent times on the subject of recrystallization, the latest nearly 20 years ago. Since that time, considerable advances have been made, both in our understanding of the subject and in the techniques available to the researcher. The book covers recovery, recrystallization and grain growth in depth including specific chapters on ordered materials, two-phase alloys, annealing textures and annealing during and after hot working. Also contained are treatments of the deformed state and the structure and mobility of grain boundaries, technologically important examples and a chapter on computer simulation and modelling. The book provides a scientific treatment of the subject for researchers or students in Materials Science, Metallurgy and related disciplines, who require a more detailed coverage than is found in textbooks on physical metallurgy, and a more coherent treatment than will be found in the many conference proceedings and review articles.




Recrystallization: Types, Techniques and Applications


Book Description

A very large part of metallic materials is used in the wrought form. Several thermomechanical processing (TMP) steps are usually employed to produce the intermediate or final products, during which recrystallization and its related phenomena such as work hardening, recovery and grain growth may take place. The sophisticated controlling of recrystallization is one of the most effective ways to tailor the microstructures and mechanical properties of metallic components. Recrystallization: Types, Techniques and Applications is the joint work of several well-known active scientists within this field, and each one focuses on the latest developments of their specific topics. This book covers the deformation structure and recovery, recrystallization and grain growth phenomena, characterization of recrystallization, interaction between recrystallization and solute/second phase particles, the competition between phase transformation and recrystallization, as well as numerical modelling of recrystallization. It is a standard reference for practicing engineers and researchers involved in hot deformation and heat treatment of metallic materials.




Recent Developments in the Study of Recrystallization


Book Description

Recrystallization is a phenomenon moderately well documented in the geological and metallurgical literature. This book provides a timely overview of the latest research and methods in a variety of fields where recrystallization is studied and is an important factor. The main advantage of a new look at these fields is the rapid increase in modern techniques, such as TEM, spectrometers and modeling capabilities, all of which are providing us with far better images and analysis than ever previously possible. This book will be invaluable to a wide range of research scientists; metallurgists looking to improve properties of alloys, those interested in how the latest equipment may be used to image grains and to all those who work with frozen aqueous solutions where recrystallization may be a problem.




Fundamentals of Creep in Metals and Alloys


Book Description

* Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials * Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures * Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion Understanding the strength of materials at a range of temperatures is critically important to a huge number of researchers and practitioners from a wide range of fields and industry sectors including metallurgists, industrial designers, aerospace R&D personnel, and structural engineers. The most up-to date and comprehensive book in the field, Fundamentals of Creep in Metals and Alloys discusses the fundamentals of time-dependent plasticity or creep plasticity in metals, alloys and metallic compounds. This is the first book of its kind that provides broad coverage of a range of materials not just a sub-group such as metallic compounds, superalloys or crystals. As such it presents the most balanced view of creep for all materials scientists. The theory of all of these phenomena are extensively reviewed and analysed in view of an extensive bibliography that includes the most recent publications in the field. All sections of the book have undergone extensive peer review and therefore the reader can be sure they have access to the most up-to-date research, fully interrogated, from the world’s leading investigators. · Numerous line drawings with consistent format and units allow easy comparison of the behavior of a very wide range of materials· Transmission electron micrographs provide a direct insight in the basic microstructure of metals deforming at high temperatures· Extensive literature review of over 1000 references provide an excellent reference document, and a very balanced discussion




Hot Deformation and Processing of Aluminum Alloys


Book Description

A comprehensive treatise on the hot working of aluminum and its alloys, Hot Deformation and Processing of Aluminum Alloys details the possible microstructural developments that can occur with hot deformation of various alloys, as well as the kind of mechanical properties that can be anticipated. The authors take great care to explain and differenti




Materials Processing Fundamentals 2020


Book Description

This volume includes contributions on the physical and numerical modeling of materials processing, and covers a range of metals and minerals. Authors present models and results related to the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.







Processing-Structure-Property Relationships in Metals


Book Description

In the industrial manufacturing of metals, the achievement of products featuring desired characteristics always requires the control of process parameters in order to obtain a suitable microstructure. The strict relationship among process parameters, microstructure, and mechanical properties is a matter of interest in different areas, such as foundry, plastic forming, sintering, welding, etc., and regards both well-established and innovative processes. Nowadays, circular economy and sustainable technological development are dominant paradigms and impose an optimized use of resources, a lower energetic impact of industrial processes and new tasks for materials and products. In this frame, this Special Issue covers a broad range of research works and contains research and review papers.




Recrystallization '90


Book Description