Red Beet Biotechnology


Book Description

Biotechnology is a rapidly growing research area which is immediately translated into industrial applications. Although over 1000 research papers have emerged on various aspects of red beet and the chemistry of betalaines pigments, surprisingly no comprehensive book is available. The proposed Red Beet book encompasses a scholarly compilation of recent biotechnological research developments made in basic science, biochemistry of the chief components, technological developments in augmenting and recovery of such useful compounds and value-added products with discussions on future perspectives. The book will provide detailed information of the chemistry of the main components of normal and genetically engineered beetroot.




Beta maritima


Book Description

This book, now in its second edition, provides researchers and operators a complete description of all aspects regarding the wild ancestor of sugar beet. The possibility of crossing modern crops with the ancestors from which they are derived in order to recover some traits lost through domestication is increasingly attracting interest. The selective process implemented by the first growers led to the elimination of features not considered useful at the time. Yet some of these lost traits have now become very important. In fact, in many areas sugar beet cultivation would now be impossible without the transfer of some genetic resistances from Beta maritima, the crop’s ancestor. Moreover, the isolation of such traits is becoming increasingly critical with regard to current and future environmental and economic considerations on e.g. the use of pesticides. This second edition replaces certain photographs and has been updated to reflect the latest advances and findings. One chapter and several sections have been rewritten, and significant revisions have been made throughout the text. The new techniques provide breeders with massively improved analytical means for the safest and fastest selection procedures. Not only will these techniques allow Beta maritima to take on a far greater role as a source of favorable traits; the relative ease with which these characteristics can be transferred will also make it possible to use the germplasm of the whole genus Beta and Patellifolia, which to date has been highly complex, if not impossible, due to the difficulties of hybridization.




Nutritional Composition and Antioxidant Properties of Fruits and Vegetables


Book Description

Nutritional Composition and Antioxidant Properties of Fruits and Vegetables provides an overview of the nutritional and anti-nutritional composition, antioxidant potential, and health benefits of a wide range of commonly consumed fruits and vegetables. The book presents a comprehensive overview on a variety of topics, including inflorescence, flowers and flower buds (broccoli, cauliflower, cabbage), bulb, stem and stalk (onion, celery, asparagus, celery), leaves (watercress, lettuce, spinach), fruit and seed (peppers, squash, tomato, eggplant, green beans), roots and tubers (red beet, carrots, radish), and fruits, such as citrus (orange, lemon, grapefruit), berries (blackberry, strawberry, lingonberry, bayberry, blueberry), melons (pumpkin, watermelon), and more. Each chapter, contributed by an international expert in the field, also discusses the factors influencing antioxidant content, such as genotype, environmental variation and agronomic conditions. Contains detailed information on nutritional and anti-nutritional composition for commonly consumed fruits and vegetables Presents recent epidemiological information on the health benefits of fresh produce Provides in-depth information about the antioxidant properties of a range of fruits and vegetables




Beta maritima


Book Description

Along the undisturbed shores, especially of the Mediterranean Sea and the European North Atlantic Ocean, is a quite widespread plant called Beta maritima by botanists, or more commonly sea beet. Nothing, for the inexperienced observer's eye, distinguishes it from surrounding wild vegetation. Despite its inconspicuous and nearly invisible flowers, the plant has had and will have invaluable economic and scientific importance. Indeed, according to Linnè, it is considered "the progenitor of the beet crops possibly born from Beta maritima in some foreign country". Recent molecular research confirmed this lineage. Selection applied after domestication has created many cultivated types with different destinations. The wild plant always has been harvested and used both for food and as a medicinal herb. Sea beet crosses easily with the cultivated types. This facilitates the transmission of genetic traits lost during domestication, which selection processes aimed only at features immediately useful to farmers and consumers may have depleted. Indeed, as with several crop wild relatives, Beta maritima has been successfully used to improve cultivated beet’s genetic resistances against many diseases and pests. In fact, sugar beet cultivation currently would be impossible in many countries without the recovery of traits preserved in the wild germplasm. Dr. Enrico Biancardi graduated from Bologna University. From 1977 until 2009, he was involved in sugar beet breeding activity by the Istituto Sperimentale per le Colture Industriali (ISCI) formerly Stazione Sperimentale di Bieticoltura (Rovigo, Italy), where he released rhizomania and cercospora resistant germplasm and collected seeds of Mediterranean sea beet populations as a genetic resource for breeding and ex situ conservation. Retired since 2009, he still collaborates with several working breeders, in particular, at the USDA Agricultural Research Stations, at the Chinese Academy of Agricultural Science (CAAS), and at the Athens University (AUA). He has edited books, books chapters and authored more than 150 papers. Dr. Lee Panella is a plant breeder and geneticist with the USDA-ARS at Fort Collins, Colorado. He earned his B.S. in Crop and Soil Science from Michigan State University, an M.S. in Plant Breeding from Texas A&M University, and a Ph.D. in genetics from the University of California at Davis. His research focus is developing disease resistant germplasm using sugar beet wild relatives. He is chairman of the USDA-ARS Sugar Beet Crop Germplasm Committee and has collected and worked extensively with sea beet. Dr. Robert T. Lewellen was raised on a ranch in Eastern Oregon and obtained a B.S. in Crop Science from Oregon State University followed by a Ph.D. from Montana State University in Genetics. From 1966 to 2008 he was a research geneticist for the USDA-ARS at Salinas, California, where he studied the genetics of sugar beet and as a plant breeder, often used sea beet as a genetic source to produce many pest and disease resistant sugar beet germplasm and parental lines, while authoring more than 100 publications.




Plant Breeding Reviews


Book Description




Betalains: Biomolecular Aspects


Book Description

This unique text provides comprehensive coverage of betalains, outlining the specific makeup and uses of this plant. The chapters provide deep insight into the biosynthesis, structures, pharmacokinetics, stability, extraction, health benefits and occurrence in nature of betalains. As the first major reference work to focus specifically on betalains, this book serves as an important reference for any researcher looking for insights into the use of betalains as functional foods, food coloring agents, and nutraceuticals. Betalains: Biomolecular Aspects outlines the chemical structure of betalains, including their occurrence in nature. The utilization of of these plants as natural color in food and beverages is covered in depth, as are the intake and secretion of betalains in the human body. The various factors affecting the stability of betalains are described, including their stability when used in food products. Current health related uses for these plants are outlined, including antioxidant and anti-inflammatory uses. The isolation and purification of these plants, plus analysis techniques, are outlined. In providing extensive coverage of betalains and their uses, this text presents a singular work which is of major value for a wide range of researchers.




Preparing for Future Products of Biotechnology


Book Description

Between 1973 and 2016, the ways to manipulate DNA to endow new characteristics in an organism (that is, biotechnology) have advanced, enabling the development of products that were not previously possible. What will the likely future products of biotechnology be over the next 5â€"10 years? What scientific capabilities, tools, and/or expertise may be needed by the regulatory agencies to ensure they make efficient and sound evaluations of the likely future products of biotechnology? Preparing for Future Products of Biotechnology analyzes the future landscape of biotechnology products and seeks to inform forthcoming policy making. This report identifies potential new risks and frameworks for risk assessment and areas in which the risks or lack of risks relating to the products of biotechnology are well understood.




Natural Food Colorants


Book Description

In this second edition of Natural Food Colorants two new chapters have been added and we have taken the opportunity to revise all the other chapters. Each of the original authors have brought up to date their individual contributions, involving in several cases an expansion to the text by the addition of new material. The new chapters are on the role of biotechnology in food colorant production and on safety in natural colorants, two areas which have undergone considerable change and development in the past five years. We have also persuaded the publishers to indulge in a display of colours by including illustrations of the majority of pigments of importance to the food industry. Finally we have rearranged the order of the chapters to reflect a more logical sequence. We hope this new edition will be greeted as enthusiastically as the first. It remains for us, as editors, to thank our contributors for undertaking the revisions with such thoroughness and to thank Blackie A&P for their support and considerable patience. G. A. F. R. J. D. R. Contributors Dr G . . Brittori Department of Biochemistry, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK Professor F. J. Francis Department of Food Science, College of Food and Natural Resources, University of Massa chusetts, Amherst, MA 01003, USA Dr G. A. F. Hendry NERC Unit of Comparative Plant Ecology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK Mr B. S.




Applications of Biotechnology in Traditional Fermented Foods


Book Description

In developing countries, traditional fermentation serves many purposes. It can improve the taste of an otherwise bland food, enhance the digestibility of a food that is difficult to assimilate, preserve food from degradation by noxious organisms, and increase nutritional value through the synthesis of essential amino acids and vitamins. Although "fermented food" has a vaguely distasteful ring, bread, wine, cheese, and yogurt are all familiar fermented foods. Less familiar are gari, ogi, idli, ugba, and other relatively unstudied but important foods in some African and Asian countries. This book reports on current research to improve the safety and nutrition of these foods through an elucidation of the microorganisms and mechanisms involved in their production. Also included are recommendations for needed research.




Dangerous Liaisons?


Book Description

With the advent of genetic engineering, "designer" crops might interbreed with natural populations. Could such romances lead to the evolution of "superweeds", as some have suggested? But haven't crops had sex with wild plants in the past? Has such gene swapping occurred without consequences? And if consequences have indeed occurred, what lessons can be gleaned for engineered crops? In Dangerous Liaisons? Norman Ellstrand examines these and other questions. He begins with basic information about the natural hybridization process. He then describes what we now know about hybridization between the world's most important crops—such as wheat, rice, maize, and soybeans—and their wild relatives. Such hybridization, Ellstrand explains, is not rare, and has occasionally had a substantial impact. In some cases, the result was problematic weeds. In others, crop genes have diluted natural diversity to the point that wild populations of certain rare species were absorbed into the gene pool of the more common crop, essentially bringing the wild species to the brink of extinction. Ellstrand concludes with a look to the future. Will engineered crops pose a greater threat than traditional crops? If so, can gene flow and hybridization be managed to control the escape of engineered genes? This book will appeal to academics, policy makers, students, and all with an interest in environmental issues.