Reduced-order Modeling and Active Control of Dry-low-emission Combustion


Book Description

This dissertation is a complementary experimental and theoretical investigation of combustion instability and lean blowout (LBO) in dry-low-emission (DLE) gas turbine engines, aiming to understand the fundamental mechanisms and shed light on active combustion control.




Active Combustion Control


Book Description

(Cont.) is a dump combustor, constructed at University of Maryland, so as to reproduce more realistic ramjet conditions. The third is an industrial swirl-stabilized combustor, constructed at University of Cambridge, to mimic realistic industrial gas combustor configurations which typically include large convective time delays, swirl, and on-line changes in the operating conditions. Results obtained from these three configurations show that through an understanding of the underlying physics and reduced-order modeling, one can design an appropriate actuation, sensing and control algorithm, all of which lead to model-based active control that reduces pressure oscillations to background noise.




Detailed and Reduced Kinetic Mechanisms in Low-Emission Combustion Processes


Book Description

The aim of this work is the application of the Representative Interactive Flamelet (RIF) model with detailed and reduced kinetics to describe the combustion processes with low-emission. Chemical kinetic reaction mechanisms are developed. Regarding the application of these mechanisms in the numerical simulation of combustion processes, the description of the formation of nitrous oxide is particularly taken into account. After the introduction in the topic, chapter 2 presents the conservation equations and the description of the turbulent flow and mixing field. The flamelet model and the RIF-concept are described: the chemical reaction kinetics is separately considered from the flow dynamics. This is possible due to the assumption of the existence of a very thin flame layer, in which the chemical processes take place. This flame layer, also considered as laminar in turbulent flows, is called flamelet. The calculation of the ignition, heat release and formation of nitrogen oxide with detailed kinetics is then possible. In chapter 3, a model for the calculation of three-dimensional combustion processes is presented. It is based on the flamelet model. To describe the formation of nitrous oxide, the consideration of the combustion as an unsteady process is very important. This is possible thanks to the use of unsteady flamelets. The flamelets are calculated interactive with the flow solver, each representative for a pathway of particle through the combustion chamber. The statistical way of fluid particle through the combustion chamber is described by the eulerian transport equations. In chapter 4, a chemical reaction mechanism is developed and validated with comparison with experimental results. Special attention is paid to the methane mechanism with consideration of nitrous oxide formation. This mechanism is reduced with steady-state assumptions. Furthermore, a pyrolysis and burnout model are presented, which are used for the simulation of the coal combustion in chapter 5. In chapter 5, simulation results for two different configurations are compared to experimental data. In the MILD combustion chamber, the formation of nitrous oxide is investigated with the use of the detailed and reduced kinetics presented in chapter 4. The Eulerian Particle Flamelet model is completed and used for the simulation of the gaseous phase during the coal combustion. Based on the results, it is shown that the flamelet model, coupled with the detailed and the reduced kinetics, is able to model low-emission combustion processes.




Turbulent Combustion Modeling


Book Description

Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.







Modeling of Combustion Systems


Book Description

Increasing competitive pressure for improved quality and efficiency on one hand and tightening emissions and operating requirements on the other leave the modern process engineer squeezed in the middle. While effective modeling can help balance these demands, the current literature offers overly theoretical treatments on modeling that do not transl




Active Feedback Control of Combustor Dynamics with Time Delay and Noise


Book Description

Longitudinal pressure oscillations in a combustion chamber are studied theoretically by means of a low order model obtained by systematic reduction from a complete representation. The formulation is based on the derivation of a generalized wave equation that accommodates the effects of mean flow, combustion, noise and control action. By using spatial averaging, the equations describing the dynamics of the chamber are reduced to a set of coupled ordinary differential equations. The form of the resulting equations is particularly convenient for model reduction and for introducing feedback control terms, while retaining all physical processes. Active feedback control of longitudiual instabilities is then introduced by using the same formulation, rewritten in statespace form. The broad objective of control simulations covered here is to investigate in a unified fashion various aspects of the problem. These include the influences of noise, parameter uncertainties, unmodeled modes and time-delay. A criterion is derived that guarantees the stability of the controlled closed-loop system in the presence of those quantities. The particular controller used here is based on a standard LQR design, but any design technique can be used as long as the stability criterion is fulfilled.