Reducing earthquake losses


Book Description

Earthquakes have caused massive death and destruction, and potentially damaging earthquakes are certain to occur in the future. Although earthquakes are uncontrollable, the losses they cause can be reduced by building structures that resist earthquake damage, matching land use to risk, developing emergency response plans, and other means. Since 1977, the federal government has had a research oriented program to reduce earthquake losses the National Earthquake Hazards Reduction Program (NEHRP). This program has made significant contributions toward improving our understanding of earthquakes and strategies to reduce their impact. Implementing action based on this understanding, however, has been quite difficult. This chapter provides an introduction to earthquakes: a sum mary of the earthquake hazard across the United States, a review of the types of losses earthquakes cause, a discussion of why earthquakes are a congressional concern, and an introduction to mitigation actions taken prior to earthquakes that can reduce losses when they occur. The federal policy response to date, NEHRP is then described and reviewed. Finally, specific policy options for improving federal efforts to reduce future earthquake losses are presented.













National Earthquake Resilience


Book Description

The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.




Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering


Book Description

The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.




Reducing Earthquake Losses


Book Description

Earthquakes have caused massive death and destruction, and potentially damaging earthquakes are certain to occur in the future. Although earthquakes are uncontrollable, the losses they cause can be reduced by building structures that resist earthquake damage, matching land use to risk, developing emergency response plans, and other means. Since 1977, the federal government has had a research oriented program to reduce earthquake losses the National Earthquake Hazards Reduction Program (NEHRP). This program has made significant contributions toward improving our understanding of earthquakes and strategies to reduce their impact. Implementing action based on this understanding, however, has been quite difficult. This chapter provides an introduction to earthquakes: a sum mary of the earthquake hazard across the United States, a review of the types of losses earthquakes cause, a discussion of why earthquakes are a congressional concern, and an introduction to mitigation actions taken prior to earthquakes that can reduce losses when they occur. The federal policy response to date, NEHRP is then described and reviewed. Finally, specific policy options for improving federal efforts to reduce future earthquake losses are presented.







Advances in Assessment and Modeling of Earthquake Loss


Book Description

This open access book originates from an international workshop organized by Turkish Natural Catastrophe Insurance Pool (TCIP) in November 2019 that gathered renown researchers from academia, representatives of leading international reinsurance and modeling companies as well as government agencies responsible of insurance pricing in Turkey. The book includes chapters related to post-earthquake damage assessment, the state-of-art and novel earthquake loss modeling, their implementation and implication in insurance pricing at national, regional and global levels, and the role of earthquake insurance in building resilient societies and fire following earthquakes. The rich context encompassed in the book makes it a valuable tool not only for professionals and researchers dealing with earthquake loss modeling but also for practitioners in the insurance and reinsurance industry.