Reducing the Seismic Vulnerability of Existing Buildings: Assessment and Retrofit


Book Description

Devastating seismic events occurring all over the world keep raising the awareness of the scientific, technical and political communities to the need of identifying assets at risk and developing more effective and cost-efficient seismic risk mitigation strategies. Significant advances in earthquake engineering research have been achieved with the rise of new technologies and techniques with potential use in risk assessment, management and mitigation. Nevertheless, there is still much to be done, particularly with regard to existing buildings, most of them built without anti-seismic provisions. The wide variety of construction and structural systems, associated with the complex behaviour of their materials, greatly limit the application of current codes and building standards to the existing building stock. To tackle this issue, there is a fundamental need for developing multidisciplinary research that can lead to the development of more sophisticated and reliable methods of analysis, as well as to improved seismic retrofitting techniques compliant with buildings conservation principles. This book intends to contribute to the aforementioned goal by stimulating the exchange of ideas and knowledge on the assessment and reduction of the seismic vulnerability of existing buildings. 10 high quality contributions authored by international experts from Italy, Portugal, Morocco, Nepal, Czech Republic and Spain are included herein. All contributions pursue the protection of existing buildings by considering the most updated methods and advanced solutions emerging from different fields of expertise.




Seismic Risk Assessment and Retrofitting


Book Description

Many more people are coming to live in earthquake-prone areas, especially urban ones. Many such areas contain low-rise, low-cost housing, while little money is available to retrofit the buildings to avoid total collapse and thus potentially save lives. The lack of money, especially in developing countries, is exacerbated by difficulties with administration, implementation and public awareness. The future of modern earthquake engineering will come to be dominated by new kinds of measuring technologies, new materials developed especially for low-rise, low-cost buildings, simpler and thus lower cost options for retrofitting, cost cutting and raising public awareness. The book covers all the areas involved in this complex issue, from the prevention of total building collapse, through improvement techniques, to legal, financial, taxation and social issues. The contributors have all made valuable contributions in their own particular fields; all of them are or have been closely involved with the issues that can arise in seismic zones in any country. The recent research results published here offer invaluable pointers to practicing engineers and administrators, as well as other scientists whose work involves saving the lives and property of the many millions of people who live and work in hazardous buildings.




Seismic Assessment and Rehabilitation of Existing Buildings


Book Description

The present volume contains a total of 23 papers centred on the research area of Seismic Assessment and Rehabilitation of Existing Buildings. This subject also forms the core of Project SfP977231, sponsored by the NATO Science for Peace Office and supported by the Scientific and Technical Research Council of Turkey [ TUBIT AK ]. Most of these papers were presented by the authors at a NATO Science for Peace Workshop held in Izmir on 13 - 14 May, 2003 and reflect a part of their latest work conducted within the general confines of the title of the NATO Project. Middle East Technical University, Ankara, Turkey serves as the hub of Project SfP977231 and coordinates research under the project with universities within Turkey, e. g. Istanbul Technical University and Kocaeli University, and with partner institutions in Greece and the Former Yugoslav Republic of Macedonia: A few articles have also been contributed by invited experts, who are all noted researchers in the field. Altogether, the contents of the volume deal with a vast array of problems in Seismic Assessment and Rehabilitation and cover a wide range of possible solutions, techniques and proposals. It is intended to touch upon many of these aspects separately below. Earthquakes constitute possibly the most widely spread and also the most feared of natural hazards. Recent earthquakes within the first six months of 2003, such as the Bingol Earthquake in Turkey and the Algerian earthquake, have caused both loss of life and severe damage to property.




Advanced Design Examples of Seismic Retrofit of Structures


Book Description

Advanced Design Examples of Seismic Retrofit of Structures provides insights on the problems associated with the seismic retrofitting of existing structures. The authors present various international case studies of seismic retrofitting projects and the different possible strategies on how to handle complex problems encountered. Users will find tactics on a variety of problems that are commonly faced, including problems faced by engineers and authorities who have little or no experience in the practice of seismic retrofitting. - Provides several examples of retrofitting projects that cover different structural systems, from non-engineered houses, to frame buildings - Presents various retrofitting methods through examples - Provides detailed, step-by-step design procedures for each example - Includes real retrofit projects with photos of the details of various retrofitting techniques - Contains several modeling details and hints making use of various software in this area




Advances in Earthquake Engineering for Urban Risk Reduction


Book Description

Earthquakes affecting urban areas can lead to catastrophic situations and hazard mitigation requires preparatory measures at all levels. Structural assessment is the diagnosis of the seismic health of buildings. Assessment is the prelude to decisions about rehabilitation or even demolition. The scale of the problem in dense urban settings brings about a need for macro seismic appraisal procedures because large numbers of existing buildings do not conform to the increased requirements of new earthquake codes and specifications or have other deficiencies. It is the vulnerable buildings - liable to cause damage and loss of life - that need immediate attention and urgent appraisal in order to decide if structural rehabilitation and upgrading are feasible. Current economic, efficient and occupant-friendly rehabilitation techniques vary widely and include the application either of precast concrete panels or layers, strips and patches of fiber reinforced polymers (FRP) in strategic locations. The papers in this book, many by renowned authorities in earthquake engineering, chart new and vital directions of research and application in the assessment and rehabilitation of buildings in seismic regions. While several papers discuss the probabilistic prediction and quantification of structural damage, others present approaches related with the in-situ and occupant friendly upgrading of buildings and propose both economical and practical techniques to address the problem.




Seismic Evaluation of Existing Buildings


Book Description

Provides design professionals & local building officials with a standard methodology to evaluate buildings of different types & occupancies in areas of different seismicity throughout the U.S.




Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems


Book Description

Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems.Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates.Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. - This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices - Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies - Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure




Rapid Visual Screening of Buildings for Potential Seismic Hazards: Supporting Documentation


Book Description

The Rapid Visual Screening (RVS) handbook can be used by trained personnel to identify, inventory, and screen buildings that are potentially seismically vulnerable. The RVS procedure comprises a method and several forms that help users to quickly identify, inventory, and score buildings according to their risk of collapse if hit by major earthquakes. The RVS handbook describes how to identify the structural type and key weakness characteristics, how to complete the screening forms, and how to manage a successful RVS program.




Seismic Design and Retrofit of Bridges


Book Description

Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges