Wind-induced Motion of Tall Buildings


Book Description

This state-of-the-art report describes various facets of the human response to wind-induced motion in tall buildings and identifies design strategies to mitigate the effects of such motion on building occupants.




Strategies for Mitigating Wind-induced Motion in Tall Buildings Through Aerodynamic and Damping Modifications


Book Description

The advent of modern structural systems, spurred by advances in construction methodology and high strength materials, has driven the height of modern skyscrapers beyond what was once deemed possible. Although science and technology has been able to increase the strength of building materials such as steel and concrete, their material stiffness has remained virtually unchanged. The end result is a wave of taller, slender and more flexible skyscrapers that are very susceptible to wind-induced excitations. Ever mindful of the fact that human comfort levels are affected by perceived structural responses, engineers must employ various strategies to satisfy serviceability constraints. This thesis presents an overview, in addition to successful applications, of the various aerodynamic and damping modifications that are used to control wind-induced motion in tall buildings. Finally, a modified gyrostabilizer, akin to those used in luxury yachts, is proposed as a possible active control mechanism. The feasibility of this device was studied using simple statics and rigid body dynamics.



















Wind Effects on a Tall Building with Recessed Cavities


Book Description

This dissertation, "Wind Effects on a Tall Building With Recessed Cavities" by Sin-yan, Wong, 黃倩欣, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In Hong Kong and other Asian metropolitan cites, high-rise residential buildings become very common. They are highly wind-sensitive, subjected to enormous wind loads at high wind speeds and may exhibit aeroelastic behavior at normal wind speeds. Many residential buildings often have an irregular shape with apartments arranged as wing sections extending from a central core so that all apartments on the floor can enjoy views. Between adjacent building wings are deeply recessed cavities. Most wind loading codes and guidelines assume stagnant flow inside the recessed cavities and wind loads are calculated based on the simplified enveloping building shape. This research studies how the static and dynamic wind loads on a tall building are modified by the presence of recessed cavities. The H-section tall building, with square enveloping shape, is selected to represent a building with two recessed cavities. A number of these building models with a systematic variation of breadths and depths of the recessed cavities are tested in the wind tunnel. Fluctuating wind forces and moments on the building models are measured and the dynamic building responses are investigated by the HFFB technique. The results show significant reductions in across-wind load fluctuations on the H-section buildings at wind incidence normal to building face with a cavity. Greater reductions are found on the fluctuation levels and the spectral energies at the vortex excitation frequency when the width/depth of the recessed cavities becomes larger. A resonant across-wind response modification factor (RMF) is adopted to quantify the effect on wind-induced dynamic building responses. For the across-wind response at critical wind incidence, the presence of recessed cavities can lead the value of RMF to as low as 0.67, that is reduction of building responses by 33%. To understand the mechanism of wind load modification caused by the presence of recessed cavities, wind pressure on all faces of the H-section tall buildings including the cavity faces are measured. Correlations of across-wind forces contributed by different building faces are analyzed. A clear quasi-periodic fluctuating component is found on the forces from the two building side faces and they act in phase in the across-wind direction. The across-wind force contributions from side faces of the windward or leeward recessed cavity are generally out-of-phase. As a result, the overall excitation levels of the total across-wind force on the building are reduced due to the presence of recessed cavities. To complement the wind tunnel study, computational fluid dynamics modeling using large-eddy simulation (LES) is carried out to study the unsteady wind flow around and wind loads on the H-section tall building with the widest and deepest recessed cavities. Furthermore, the two-dimensional (2D) case of smooth flow past 2D H-section cylinders is investigated. Both the LES and 2D experimental results give consistent observations and mechanisms of the effects of recessed cavities on the modification of dynamic wind loads on the tall building as the wind tunnel results. The thesis also reports studies on the effects of upstream terrain types, building heights and building shapes on the wind effects of H-section tall buildings. DOI: 10.5353/th_b5153712 Subjects: Wind resistant design Buildings - Aerodynamics