Refining Biomass Residues for Sustainable Energy and Bioproducts


Book Description

The utilization of various types of biomass residue to produce products such as biofuels and biochemicals means biorefinery technology using biomass residues may become a one-stop solution to the increasing need for sustainable, non-fossil sources of energy and chemicals.Refining Biomass Residues for Sustainable Energy and Bioproducts: Technology, Advances, Life Cycle Assessment and Economics focuses on the various biorefineries currently available and discusses their uses, challenges, and future developments. This book introduces the concept of integrated biorefinery systems, as well as their operation and feedstock sourcing. It explores the specificities, current developments, and potential end products of various types of residue, from industrial and municipal to agricultural and marine, as well as residue from food industries. Sustainability issues are discussed at length, including life cycle assessment, economics, and cost analysis of different biorefinery models. In addition, a number of global case studies examine successful experiences in different regions.This book is an ideal resource for researchers and practitioners in the field of bioenergy and waste management who are looking to learn about technologies involved in residue biorefinery systems, how to reduce their environmental impacts, and how to ensure their commercial viability. - Explores a range of different biorefinery categories, such as industrial, agricultural, and marine biomass residues - Includes a Life Cycle Assessment of biorefinery models, in addition to costs and market analysis. - Features case studies from around the world and is written by an international team of authors




Lignocellulosic Biomass Refining for Second Generation Biofuel Production


Book Description

Describes technological advancements for bioethanol production from lignocellulosic waste Provides a roadmap for the production and utilization of 2G biofuels Introduces the strategic role of metabolic engineering in the development of 2G biofuels Discusses technological advancements, life cycle assessment and prospects Explores novel potential lignocellulosic biomass for 2G biofuels




Biomass, Biofuels, Biochemicals


Book Description

Biomass, Biofuels, Biochemical: Circular Bioeconomy: Current Developments and Future Outlook presents the views of experienced academicians and researchers working in the area of the circular bioeconomy. This book presents an assortment of Resource recovery, Waste Biorefineries, Bio-electrochemical systems, Biopolymers and Green solvents, Bio-adsorbents, and Technology transfer topics. Environmental engineers, biotechnologists, science graduates, chemical engineers, industrial experts and policymakers working in these areas will find the information on the circular economy and its important part in developing low carbon and resource-productive economies very informative. Methodologies and beneficial strategic approaches to address the usage of wastes from agriculture, co-products, and by-products are also discussed. - Provides information on recent developments in technology transfer and global scenarios of circular bioeconomy as a single point of reference for any query regarding circular economies - Covers information on the recovery of resources, waste biorefineries and bio-electrochemical systems, and product development surrounding the circular bioeconomy - Includes information on the integration of processes and technologies for the production of biofuels and value-added products - Presents strategic integrations of various techniques/bioprocess that are essential in establishing a circular biorefinery




Biorefineries: A Step Towards Renewable and Clean Energy


Book Description

This book provides a comprehensive account of past, present and future of the biomass based biorefineries. It is an all-inclusive and insightful compilation of recent advancements in the technology and methods used for conversion of biomass to bioenergy and other useful biochemicals. The book also focuses on the limitations of existing technologies and provides the future prospects, as well as discusses socio-economic impact of biomass based biorefineries. This book assists researchers in the area of lignocellulosic biorefineries and can be used by the students, scientist and academician as an advanced reference textbook.




Processing of Biomass Waste


Book Description

Processing of Biomass Waste: Technological Upgradation and Advancement focuses on the exploitation of various waste management technologies and their associated process (microbial/chemical/physical) as tools to simultaneously generate value during treatment processes, including degradation/detoxification/stabilization toxic and hazardous contaminants. The book explores wastes as a veritable resource for wealth creation, with particular focus on resources recoverable from diverse wastes using special intervention of biotechnological tools. Other sections highlight recent technologies of waste bioprocessing in biorefinery approaches and enlighten on different approaches. The book encompasses advanced and updated information as well as future directions for young researchers and scientists who are working in the field of waste management, with a focus on sustainable value generation. - Includes cutting-edge technologies in waste bioprocessing - Focuses on applications of molecular biotechnological tools in waste bioprocessing - Provides natural and eco-friendly solutions to deal with the problem of pollution aiming value generation - Details underlying mechanisms of waste bioprocessing approaches that cover microbes for the simultaneous value generation and removal of emerging contaminants - Includes field studies on the application of biorefinery approach for eco-restoration of contaminated sites - Presents recent advances and challenges in waste bioprocessing research and applications for sustainable development




Microbial Biotechnology for Bioenergy


Book Description

Microbial Biotechnology for Bioenergy presents the new and emerging biotechnological and microbiological approaches in bioenergy and their economic, social, and environmental implications. Using the latest global data and statistics, it analyses how bioenergy technology improves quality of life by reducing air and water pollution and mitigates energy dependence by creating renewable resources in local communities. The book is formed of three sections; Section 1 addresses the "Sources, Challenges, and Environmental Views of Bioenergy and includes an overview of bioenergy, global statistics and projections for future bioenergy development, the role of biotechnology and bioprocesses in bioenergy, feedstock sources, challenges, decarbonisation, and emerging innovations and technologies. Section 2 "Yesterday, Today, and Tomorrow: Innovations of Bioenergy examines the vast topics of biotechnology and microbiology for bioenergy, reviewing both the present day state-of-the-art and future potential. Readers will find dedicated chapters on bioconversion of biomass energy and biological residues, the role of microbes, the potential of organic waste to provide bioenergy, the biotechnology of biofuels such as bioethanol, biodiesel, and biohydrogen, the sustainability of cellulosic ethanol energy and artificial photosynthesis, Power-to-X and integrating energy storage innovations, and the sustainability of microbial fuel cells. Finally, Section 3 explores the policies and environmental aspects of bioenergy, providing a global perspective on the current and future impact of bioenergy, including global projections based on present day global statistics. Microbial Biotechnology for Bioenergy is a valuable reference for biotechnologists, environmental engineers, and microbiologists interested in bioenergy, and includes explanations of the fundamentals and key concepts to ensure it is accessible to students as well as researchers and professionals. - Critically reviews past, present, and future bioenergy technologies, including global statistics, policies, and emerging approaches - Highlights opportunities to improve quality of life and mitigate energy dependence, reducing air/water pollution and creating renewable resources in local communities - Explores environmental benefits of incorporating microbial remediation into bioenergy production




Microbial Biotechnology for Renewable and Sustainable Energy


Book Description

This book covers various aspects of microbial biotechnology to produce bioenergy. It focuses on production of biofuels from plant and microbial biomass including agri-food residues and other wastes. It educates readers about various biomass resources, major aspects of production of renewable energy and fuels based on biochemical conversion routes. There is special focus on the microbial system and biotechnological processes as well as process optimization and industrial scale-up. The book brings together current challenges and potential solutions to enhance biomass to biofuel bioconversion. It is relevant for researchers, academicians, students as well as industry professionals working on biomass-based biorefineries.




Biodegradable Waste Management in the Circular Economy


Book Description

Biodegradable Waste Management in the Circular Economy Presents the major developments in new technologies and strategies for more effective recovery of matter, resources, and energy from biodegradable waste The volume of biodegradable waste produced worldwide is progressively increasing—a trend that is predicted to continue well into the foreseeable future. Developing sustainable, cost-effective, and eco-friendly approaches for processing food waste, agricultural and organic industrial waste, cardboard, biodegradable plastics, sewage sludge, and other types of biodegradable waste is one of the most significant challenges of the coming decades. Biodegradable Waste Management in the Circular Economy provides a detailed overview of the latest advances in the management of biomass for economic development. Featuring contributions from an interdisciplinary team of experts, this comprehensive resource addresses various technologies and strategies for recycling organic matter and many other renewable compounds. In-depth chapters describe the concept of circular economy, identify new sources of biodegradable waste, explore technologies for the production of biodegradable waste end-products, discuss the positive and negative effects of end-products on soil and the environment, and more. Throughout the text, the authors explore systematic approaches for secure biodegradable management in various countries and regions around the world. Explores the social, governance, and economic aspects of "waste as a resource" Addresses metal recovery, biofuel and fertilizer production, and biosorbents and biochar derived from biomass waste Discusses nutrient recovery and energy and bio-methane production from biodegradable waste Covers use cases, collection systems, and regulation of agricultural, industrial, and municipal biodegradable waste streams Presents various technologies for the production of biodegradable waste end-products, including biorefineries, anaerobic digestion, and hybrid methods Reflecting the latest trends in the rapidly changing field, Biodegradable Waste Management in the Circular Economy is essential reading for researchers, engineers, scientists, and consultants working in waste engineering and management, resource recovery, renewable resources, environmental science, agricultural and environmental engineering, soil science, and bioenergy.




Biofuels and Biorefining


Book Description

Biofuels and Biorefining: Volume One: Current Technologies for Biomass Conversion considers the conventional processes for biofuels and biomass-derived products in single and biorefinery schemes. Sections address the fundamentals of the transformation of biomass into fuels and products, including a discussion of current and future scenarios, potential raw materials that can be used, the main processing technologies and their commercial potential, and a description of the concept of biorefinery and the opportunities offered by this approach. Each chapter is supported by industry case studies covering the development of each product, fuel type, and biorefinery. This book provides an integrated approach to biofuels production and process intensification that will be useful to researchers involved in all aspects of bioenergy, particularly those interested in cost reduction, environmental impact and enhanced production. - Includes all fundamental concepts related to the production of biofuels and value-added products from biomass - Provides a comprehensive biorefinery scheme that addresses all biofuel types (liquid, solid and gaseous) and related bio-based products - Presents state-of-the-art information on production processes - Covers all required information for the modeling and economical assessment of biofuels production in single process or under a biorefinery scheme




Biorefinery Production Technologies for Chemicals and Energy


Book Description

This book covers almost all of the diverse aspects of utilizing lignocellulosic biomass for valuable biorefinery product development of chemicals, alternative fuels and energy. The world has shifted towards sustainable development for the generation of energy and industrially valuable chemicals. Biorefinery plays an important role in the integration of conversion process with high-end equipment facilities for the generation of energy, fuels and chemicals. The book is divided into four parts. The first part, "Basic Principles of Biorefinery," covers the concept of biorefinery, its application in industrial bioprocessing, the utilization of biomass for biorefinery application, and its future prospects and economic performance. The second part, "Biorefinery for Production of Chemicals," covers the production of bioactive compounds, gallic acid, C4, C5, and C6 compounds, etc., from a variety of substrates. The third part, "Biorefinery for Production of Alternative Fuel and Energy," covers sustainable production of bioethanol, biodiesel, and biogas from different types of substrates. The last part of this book discusses sequential utilization of wheat straw, material balance, and biorefinery approach. The approaches presented in this book will help readers/users from different areas like process engineering and biochemistry to plan integrated and inventive methods to trim down the expenditure of the industrial manufacture process to accomplish cost-effective feasible products in biorefinery.