Applied RHEED


Book Description

The book describes RHEED (reflection high-energy electron diffraction) used as a tool for crystal growth. New methods using RHEED to characterize surfaces and interfaces during crystal growth by MBE (molecular beam epitaxy) are presented. Special emphasis is put on RHEED intensity oscillations, segregation phenomena, electron energy-loss spectroscopy and RHEED with rotating substrates.







Reflection High-Energy Electron Diffraction and Reflection Electron Imaging of Surfaces


Book Description

This volume contains the papers presented at the NATO Advanced Research Workshop in "Reflection High Energy Electron Diffraction and Reflection Electron Imaging of Surfaces" held at the Koningshof conference center, Veldhoven, the Netherlands, June 15-19, 1987. The main topics of the workshop, Reflection High Energy Electron Diffraction (RHEED) and Reflection Electron Microscopy (REM), have a common basis in the diffraction processes which high energy electrons undergo when they interact with solid surfaces at grazing angles. However, while REM is a new technique developed on the basis of recent advances in transmission electron microscopy, RHEED is an old method in surface crystallography going back to the discovery of electron diffraction in 1927 by Davisson and Germer. Until the development of ultra high vacuum techniques in the 1960's made instruments using slow electrons more accessable, RHEED was the dominating electron diffraction technique. Since then and until recently the method of Low Energy Electron Diffraction (LEED) largely surpassed RHEED in popularity in surface studies. The two methods are closely related of course, each with its own specific advantages. The grazing angle geometry of RHEED has now become a very useful feature because this makes it ideally suited for combination with the thin growth technique of Molecular Beam Epitaxy (MBE). This combination allows in-situ studies of freshly grown and even growing surfaces, opening up new areas of research of both fundamental and technological importance.




Compendium of Surface and Interface Analysis


Book Description

This book concisely illustrates the techniques of major surface analysis and their applications to a few key examples. Surfaces play crucial roles in various interfacial processes, and their electronic/geometric structures rule the physical/chemical properties. In the last several decades, various techniques for surface analysis have been developed in conjunction with advances in optics, electronics, and quantum beams. This book provides a useful resource for a wide range of scientists and engineers from students to professionals in understanding the main points of each technique, such as principles, capabilities and requirements, at a glance. It is a contemporary encyclopedia for selecting the appropriate method depending on the reader's purpose.




High Energy Electron Diffraction and Microscopy


Book Description

This book is an in-depth treatment of the theoretical background relevant to an understanding of materials that can be obtained by using high-energy electron diffraction and microscopy.







Elastic and Inelastic Scattering in Electron Diffraction and Imaging


Book Description

Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.




In Situ Characterization of Thin Film Growth


Book Description

Advanced techniques for characterizing thin film growth in situ help to develop improved understanding and faster diagnosis of issues with the process. In situ characterization of thin film growth reviews current and developing techniques for characterizing the growth of thin films, covering an important gap in research. Part one covers electron diffraction techniques for in situ study of thin film growth, including chapters on topics such as reflection high-energy electron diffraction (RHEED) and inelastic scattering techniques. Part two focuses on photoemission techniques, with chapters covering ultraviolet photoemission spectroscopy (UPS), X-ray photoelectron spectroscopy (XPS) and in situ spectroscopic ellipsometry for characterization of thin film growth. Finally, part three discusses alternative in situ characterization techniques. Chapters focus on topics such as ion beam surface characterization, real time in situ surface monitoring of thin film growth, deposition vapour monitoring and the use of surface x-ray diffraction for studying epitaxial film growth. With its distinguished editors and international team of contributors, In situ characterization of thin film growth is a standard reference for materials scientists and engineers in the electronics and photonics industries, as well as all those with an academic research interest in this area. Chapters review electron diffraction techniques, including the methodology for observations and measurements Discusses the principles and applications of photoemission techniques Examines alternative in situ characterisation techniques




Physics, Fabrication, and Applications of Multilayered Structures


Book Description

Low-dimensional materials are of fundamental interest in physics and chemistry and have also found a wide variety of technological applica tions in fields ranging from microelectronics to optics. Since 1986, several seminars and summer schools devoted to low-dimensional systems have been supported by NATO. The present one, Physics, Fabrication and Applications of Multilayered structures, brought together specialists from different fields in order to review fabrication techniques, charac terization methods, physics and applications. Artificially layered materials are attractive because alternately layering two (or more) elements, by evaporation or sputtering, is a way to obtain new materials with (hopefully) new physical properties that pure materials or alloys do not allow. These new possibilities can be ob tained in electronic transport, optics, magnetism or the reflectivity of x-rays and slow neutrons. By changing the components and the thickness of the layers one can track continuously how the new properties appear and follow the importance of the multilayer structure of the materials. In addition, with their large number of interfaces the study of inter face properties becomes easier in multilayered structures than in mono layers or bilayers. As a rule, the role of the interface quality, and also the coupling between layers, increases as the thickness of the layer decreases. Several applications at the development stage require layer thicknesses of just a few atomic layers.