Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods


Book Description

The concept of "reformulation" has long been playing an important role in mathematical programming. A classical example is the penalization technique in constrained optimization that transforms the constraints into the objective function via a penalty function thereby reformulating a constrained problem as an equivalent or approximately equivalent unconstrained problem. More recent trends consist of the reformulation of various mathematical programming prob lems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. Because of the recent advent of various tools in nonsmooth analysis, the reformulation approach has become increasingly profound and diversified. In view of growing interests in this active field, we planned to organize a cluster of sessions entitled "Reformulation - Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods" in the 16th International Symposium on Mathematical Programming (ismp97) held at Lausanne EPFL, Switzerland on August 24-29, 1997. Responding to our invitation, thirty-eight people agreed to give a talk within the cluster, which enabled us to organize thirteen sessions in total. We think that it was one of the largest and most exciting clusters in the symposium. Thanks to the earnest support by the speakers and the chairpersons, the sessions attracted much attention of the participants and were filled with great enthusiasm of the audience.




Progress in Optimization


Book Description

Although the monograph Progress in Optimization I: Contributions from Aus tralasia grew from the idea of publishing a proceedings of the Fourth Optimiza tion Day, held in July 1997 at the Royal Melbourne Institute of Technology, the focus soon changed to a refereed volume in optimization. The intention is to publish a similar book annually, following each Optimization Day. The idea of having an annual Optimization Day was conceived by Barney Glover; the first of these Optimization Days was held in 1994 at the University of Ballarat. Barney hoped that such a yearly event would bring together the many, but widely dispersed, researchers in Australia who were publishing in optimization and related areas such as control. The first Optimization Day event was followed by similar conferences at The University of New South Wales (1995), The University of Melbourne (1996), the Royal Melbourne Institute of Technology (1997), and The University of Western Australia (1998). The 1999 conference will return to Ballarat University, being organized by Barney's long-time collaborator Alex Rubinov. In recent years the Optimization Day has been held in conjunction with other locally-held national or international conferences. This has widened the scope of the monograph with contributions not only coming from researchers in Australia and neighboring regions but also from their collaborators in Europe and North America.




Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces


Book Description

A comprehensive treatment of semismooth Newton methods in function spaces: from their foundations to recent progress in the field. This book is appropriate for researchers and practitioners in PDE-constrained optimization, nonlinear optimization and numerical analysis, as well as engineers interested in the current theory and methods for solving variational inequalities.




Recent Advances in Fuzzy Sets Theory, Fractional Calculus, Dynamic Systems and Optimization


Book Description

We describe in this book recent advances in fuzzy sets theory, fractional calculus, dynamic systems, and optimization. The book provides a setting for the discussion of recent developments in a wide variety of topics including partial differential equations, dynamic systems, optimization, numerical analysis, fuzzy sets theory, fractional calculus, and its applications. The book is aimed at bringing together contributions from leading academic scientists, researchers, and research scholars to exchange and share their experiences and research results on all aspects of applied mathematics, modeling, algebra, economics, finance, and applications. It also provides an interdisciplinary platform for researchers, practitioners, and educators to present the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of applied mathematics. The published chapters address various aspects of academic scientists, researchers, and research scholars in many variety mathematical topics.




Numerical Methods for Nonsmooth Dynamical Systems


Book Description

This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov’s systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.




Encyclopedia of Optimization


Book Description

The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".




Variational Analysis and Applications


Book Description

This book discusses a new discipline, variational analysis, which contains the calculus of variations, differential calculus, optimization, and variational inequalities. To such classic branches of mathematics, variational analysis provides a uniform theoretical base that represents a powerful tool for the applications. The contributors are among the best experts in the field. Audience The target audience of this book includes scholars in mathematics (especially those in mathematical analysis), mathematical physics and applied mathematics, calculus of variations, optimization and operations research, industrial mathematics, structural engineering, and statistics and economics.




Nonsmooth Mechanics and Convex Optimization


Book Description

"This book concerns matter that is intrinsically difficult: convex optimization, complementarity and duality, nonsmooth analysis, linear and nonlinear programming, etc. The author has skillfully introduced these and many more concepts, and woven them into a seamless whole by retaining an easy and consistent style throughout. The book is not all the




Advanced Topics in Nonsmooth Dynamics


Book Description

This book discusses emerging topics in the area of nonsmooth dynamics research, such as numerical methods for nonsmooth systems, impact laws for multi-collisions, nonlinear vibrations and control of nonsmooth systems. It documents original work of researchers at the European Network for NonSmooth Dynamics (ENNSD), which provides a cooperation platform for researchers in the field and promotes research focused on nonsmooth dynamics and its applications. Since the establishment of the network in 2012, six ENNSD symposia have been organized at different European locations. The network brings together 40 specialists from 9 different countries in and outside Europe and a wealth of scientific knowledge has been gathered and developed by this group of experts in recent years. The book is of interest to both new and experienced researchers in the field of nonsmooth dynamics. Each chapter is written in such a way as to provide an introduction to the topic for researchers from other fields.




Nonsmooth/Nonconvex Mechanics


Book Description

Nonsmooth and nonconvex models arise in several important applications of mechanics and engineering. The interest in this field is growing from both mathematicians and engineers. The study of numerous industrial applications, including contact phenomena in statics and dynamics or delamination effects in composites, require the consideration of nonsmoothness and nonconvexity. The mathematical topics discussed in this book include variational and hemivariational inequalities, duality, complementarity, variational principles, sensitivity analysis, eigenvalue and resonance problems, and minimax problems. Applications are considered in the following areas among others: nonsmooth statics and dynamics, stability of quasi- static evolution processes, friction problems, adhesive contact and debonding, inverse problems, pseudoelastic modeling of phase transitions, chaotic behavior in nonlinear beams, and nonholonomic mechanical systems. This volume contains 22 chapters written by various leading researchers and presents a cohesive and authoritative overview of recent results and applications in the area of nonsmooth and nonconvex mechanics. Audience: Faculty, graduate students, and researchers in applied mathematics, optimization, control and engineering.