Microtubule Dynamics


Book Description

Microtubules are at the heart of cellular self-organization, and their dynamic nature allows them to explore the intracellular space and mediate the transport of cargoes from the nucleus to the outer edges of the cell and back. In Microtubule Dynamics: Methods and Protocols, experts in the field provide an up-to-date collection of methods and approaches that are used to investigate microtubule dynamics in vitro and in cells. Beginning with the question of how to analyze microtubule dynamics, the volume continues with detailed descriptions of how to isolate tubulin from different sources and with different posttranslational modifications, methods used to study microtubule dynamics and microtubule interactions in vitro, techniques to investigate the ultrastructure of microtubules and associated proteins, assays to study microtubule nucleation, turnover, and force production in cells, as well as approaches to isolate novel microtubule-associated proteins and their interacting proteins. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Definitive and practical, Microtubule Dynamics: Methods and Protocols provides the key protocols needed by novices and experts on how to perform a broad range of well-established and newly-emerging techniques in this vital field.




Cytoskeleton


Book Description

The cytoskeleton is a highly dynamic intracellular platform constituted by a three-dimensional network of proteins responsible for key cellular roles as structure and shape, cell growth and development, and offering to the cell with "motility" that being the ability of the entire cell to move and for material to be moved within the cell in a regulated fashion (vesicle trafficking). The present edition of Cytoskeleton provides new insights into the structure-functional features, dynamics, and cytoskeleton's relationship to diseases. The authors' contribution in this book will be of substantial importance to a wide audience such as clinicians, researches, educators, and students interested in getting updated knowledge about molecular basis of cytoskeleton, such as regulation of cell vital processes by actin-binding proteins as cell morphogenesis, motility, their implications in cell signaling, as well as strategies for clinical trial and alternative therapies based in multitargeting molecules to tackle diseases, that is, cancer.




The Plant Cytoskeleton


Book Description

Plant cells house highly dynamic cytoskeletal networks of microtubules and actin microfilaments. They constantly undergo remodeling to fulfill their roles in supporting cell division, enlargement, and differentiation. Following early studies on structural aspects of the networks, recent breakthroughs have connected them with more and more intracellular events essential for plant growth and development. Advanced technologies in cell biology (live-cell imaging in particular), molecular genetics, genomics, and proteomics have revolutionized this field of study. Stories summarized in this book may inspire enthusiastic scientists to pursue new directions toward understanding functions of the plant cytoskeleton. The Plant Cytoskeleton is divided into three sections: 1) Molecular Basis of the Plant Cytoskeleton; 2) Cytoskeletal Reorganization in Plant Cell Division; and 3) The Cytoskeleton in Plant Growth and Development. This book is aimed at serving as a resource for anyone who wishes to learn about the plant cytoskeleton beyond ordinary textbooks.




Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging


Book Description

Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging is an eleven volume series that discusses in detail all aspects of autophagy machinery in the context of health, cancer, and other pathologies. Autophagy maintains homeostasis during starvation or stress conditions by balancing the synthesis of cellular components and their deregulation by autophagy. This series discusses the characterization of autophagosome-enriched vaccines and its efficacy in cancer immunotherapy. Autophagy serves to maintain healthy cells, tissues, and organs, but also promotes cancer survival and growth of established tumors. Impaired or deregulated autophagy can also contribute to disease pathogenesis. Understanding the importance and necessity of the role of autophagy in health and disease is vital for the studies of cancer, aging, neurodegeneration, immunology, and infectious diseases. Comprehensive and forward-thinking, these books offer a valuable guide to cellular processes while also inciting researchers to explore their potentially important connections. - Presents the most advanced information regarding the role of the autophagic system in life and death - Examines whether autophagy acts fundamentally as a cell survivor or cell death pathway or both - Introduces new, more effective therapeutic strategies in the development of targeted drugs and programmed cell death, providing information that will aid in preventing detrimental inflammation - Features recent advancements in the molecular mechanisms underlying a large number of genetic and epigenetic diseases and abnormalities, including atherosclerosis and CNS tumors, and their development and treatment - Includes chapters authored by leaders in the field around the globe—the broadest, most expert coverage available




Microtubules: in vivo


Book Description

Microtubules: in vivo includes chapters by experts around the world on many aspects of microtubule imaging in living and fixed cells; assays to study microtubule function in a wide array of model organisms and cultured cells; high resolution approaches to study of the cytoskeleton. The authors share their years of experience, outlining potential pitfalls and critical factors to consider in experimental design, experimental implementation and data interpretation. - Includes chapters by experts around the world on many aspects of microtubule imaging in living and fixed cells; assays to study microtubule function in a wide array of model organisms and cultured cells; high resolution approaches to study of the cytoskeleton - The authors share their years of experience, outlining potential pitfalls and critical factors to consider in experimental design, experimental implementation and data interpretation







The Cytoskeleton


Book Description







Primary Cilia


Book Description

In recent years, the role of cilia in the study of health, development and disease has been increasingly clear, and new discoveries have made this an exciting and important field of research. This comprehensive volume, a complement to the new three-volume treatment of cilia and flagella by King and Pazour, presents easy-to-follow protocols and detailed background information for researchers working with cilia and flagella. - Covers protocols for primary cilia across several systems and species - Both classic and state-of-the-art methods readily adaptable across model systems, and designed to last the test of time - Relevant to clinicians and scientists working in a wide range of fields




Bioenergetics of the Cell: Quantitative Aspects


Book Description

This volume continues the discussion of the problems of in vivo and in vitro. The recently solved X-ray structure of the mitochondrial creatine kinase and its molecular biology cellular bioenergetics - the tradition we started in 1994 by publication of the focused issue of Molecular and Cellular are analyzed with respect to its molecular physiology and Biochemistry, volume 133/134 and a book 'Cellular Bio functional coupling to the adenine nucleotide translocase, as energetics: role of coupled creatine kinases' edited by V. Saks well as its participation, together with the adenylate kinase and R. Ventura-Clapier and published by Kluwer Publishers, system, in intracellular energy transfer. The results of the Dordrecht -Boston. In the present volume, use of quantitative studies of creatine kinase deficient transgenic mice are methods of studies of organized metabolic systems, such as summarized and analyzed by using mathematical models of mathematical modeling and Metabolic Control Analysis, for the compartmentalized energy transfer, thus combining two investigation of the problems of bioenergetics of the cell is powerful new methods of the research. All these results, described together with presentation of new experimental together with the physiological and NMR data on the cardiac results. The following central problems of the cellular bio metabolic and mitochondrial responses to work-load changes energetics are the focus of the discussions: the mechanisms concord to the concept of metabolic networks of energy of regulation of oxidative phosphorylation in the cells in vivo transfer and feedback regulation.