Regulation of Nutrient Uptake by Plants


Book Description

This book describes the mechanisms of nutrient taken up by plants at the biochemical and molecular level. This is a new concept developed over the past 30 years, primarily due to use of modern technology developed in biotechnological research, instrumentation, modern computation facilities, bioinformatics, the large volumes of information generated by use of various ‘omics’ and of course the dedicated hard work of a large number of researchers. Recent research indicates that nutrient uptake, its transport and redistribution in plants are under genetic control. There are groups of genes for each nutrient that encode transporter proteins whose functions are to acquire the specific nutrient from the soil and transport it across the plasma membrane of the root hair cells for use in plant metabolism. Deficiency or sufficiency of a plant nutrient induces different groups of genes to produce m-RNA transcripts for translation of transporter proteins. A large number of metabolic enzymes are up or down regulated in response to deficiency of plant nutrients. Morphological and metabolic adaptations in order to better acquire nutrients and use them frugally when nutrients are scarce in the growth medium can be observed in plants. Heavy metals, which are toxic to plants, induce different sets of defence mechanisms. In 20 chapters, the book describes plants’ uptake mechanisms for all the major, secondary and micronutrients, beneficial elements and heavy metals. References to research work quoted in the text are updated up to 2014 and included at the end of each chapter. Biotechnological approaches to improving nutrient use efficiency are discussed wherever such information is available. The structure and functions of transporter proteins involved in the uptake of nutrients are discussed. Additional information on some of the specific topics is provided in text boxes or as separate sections within the chapters. Lastly, the terminology used has been explained as far as possible in the text, mostly within parentheses.




Nutrient Acquisition by Plants


Book Description

This is an integrated review of the mechanisms controlling plant nutrient uptake and how plants respond to changes in the environment. Among key topics covered are: soil nutrient bioavailability; root responses to variations in nutrient supply; nitrogen fixation; root architecture; life span; mycorrhizae; responses to climate change. The book helps us understand the mechanisms that govern present-day plant communities and to predict the response of plants to a changing climate.




Plant Nitrogen


Book Description

Jointly published with INRA, Paris. This book covers all aspects of the transfer of nitrogen from the soil and air to a final resting place in the seed protein of a crop plant. It describes the physiological and molecular mechanisms of ammonium and nitrate transport and assimilation, including symbiotic nitrogen fixation by the Rhizobiacea. Amino acid metabolism and nitrogen traffic during plant growth and development and details of protein biosynthesis in the seeds are also extensively covered. Finally, the effects of the application of nitrogen fertilisers on plant growth, crop yield and the environment are discussed. Written by international experts in their field, Plant Nitrogen is essential reading for all plant biochemists, biotechnologists, molecular biologists and physiologists as well as plant breeders, agricultural engineers, agronomists and phytochemists.




Mycorrhizal Symbiosis


Book Description

The roots of most plants are colonized by symbiotic fungi to form mycorrhiza, which play a critical role in the capture of nutrients from the soil and therefore in plant nutrition. Mycorrhizal Symbiosis is recognized as the definitive work in this area. Since the last edition was published there have been major advances in the field, particularly in the area of molecular biology, and the new edition has been fully revised and updated to incorporate these exciting new developments. - Over 50% new material - Includes expanded color plate section - Covers all aspects of mycorrhiza - Presents new taxonomy - Discusses the impact of proteomics and genomics on research in this area




Mineral Nutrition of Higher Plants


Book Description

This text presents the principles of mineral nutrition in the light of current advances. For this second edition more emphasis has been placed on root water relations and functions of micronutrients as well as external and internal factors on root growth and the root-soil interface.







Plant Nutrition — Molecular Biology and Genetics


Book Description

The sixth International Symposium on Genetics and Molecular Biology of Plant Nutriti9n was held in Elsinore, Denmark from August 17-21, 1998 and organised by th RiS0 National Laboratory in the year of its 40 anniversary. The 98 participants represented 23 countries and 80 scientific contributions with 43 oral and 37 poster presentations. The symposium addressed the molecular mechanisms, physiology and genetic regulation of plant nutrition. The Symposium brought together scientists from a range of different disciplines to exchange information and ideas on the molecular biology of mineral nutrition of plants. The symposium emphasised: • Bridging the gab between molecular biology, applied genetics, plant nutrition and plant breeding. • The development of methodologies to improve the efficiency and effectiveness of nutrition of plants • Quality of plant products. With sessions on: Nitrogen; Phosphorous; Micronutrients; Symbiosis; Membranes; Stress; Heavy Metals and Plant Breeding. In comparison with the previous conferences in this series more emphasis was placed on use of molecular techniques to clarify physiological mechanisms and processes, gene expression and regulation, as well as genetic marker assisted analysis. Significant of molecular genetic markers and other progress was reported in exploitation biotechnologies in breeding programmes.




Plant Physiological Ecology


Book Description

Physiological plant ecology is primarily concerned with the function and performance of plants in their environment. Within this broad focus, attempts are made on one hand to understand the underlying physiological, biochemical and molecular attributes of plants with respect to performance under the constraints imposed by the environment. On the other hand physiological ecology is also concerned with a more synthetic view which attempts to under stand the distribution and success of plants measured in terms of the factors that promote long-term survival and reproduction in the environment. These concerns are not mutually exclusive but rather represent a continuum of research approaches. Osmond et al. (1980) have elegantly pointed this out in a space-time scale showing that the concerns of physiological ecology range from biochemical and organelle-scale events with time constants of a second or minutes to succession and evolutionary-scale events involving communities and ecosystems and thousands, if not millions, of years. The focus of physiological ecology is typically at the single leaf or root system level extending up to the whole plant. The time scale is on the order of minutes to a year. The activities of individual physiological ecologists extend in one direction or the other, but few if any are directly concerned with the whole space-time scale. In their work, however, they must be cognizant both of the underlying mechanisms as well as the consequences to ecological and evolutionary processes.




Handbook of Plant Nutrition


Book Description

The burgeoning demand on the world food supply, coupled with concern over the use of chemical fertilizers, has led to an accelerated interest in the practice of precision agriculture. This practice involves the careful control and monitoring of plant nutrition to maximize the rate of growth and yield of crops, as well as their nutritional value.




Nutrient Interactions in Plants


Book Description