Regulation of Planar Cell Polarity and Epithelial Remodeling by the Fat Cadherin


Book Description

Epithelial tissues exhibit a diverse range of morphologies that support specific functions within the body. During morphogenesis, cells within a tissue must coordinately receive and respond to spatial information; this ability is reflected by the polarization of molecules, structures, or behaviors within the plane of the tissue, a property known as planar cell polarity. This dissertation describes the morphogenesis of denticle-producing cells in the Drosophila embryo, which display a planar polarized organization of the actin-based denticle structure, adherens junctions, and the microtubule cytoskeleton. Denticle-producing cells undergo changes in morphology accompanied by polarized remodeling of cellular junctions. Fat, an evolutionarily conserved cadherin, was required for all of these aspects of planar polarized cell organization and behavior, suggesting that Fat signaling provides a common spatial cue that influences diverse classes of cell biological processes involving the cytoskeleton, adhesion, and contractility. Polarized structures were readily visible using fixed and live imaging of intact embryos, and I present quantitative methods for describing the behavior of these structures over time. My findings additionally implicate the myosin Dachs, Hippo/Warts signaling, and Notch activity as mechanisms that influence planar polarity in the embryo. The work presented in this dissertation demonstrates the tractability of denticle-producing cells as a model system for studying planar cell polarity, and has identified the Fat cadherin as a molecular starting point from which to investigate diverse mechanisms of epithelial morphogenesis.




Tissue Remodeling and Epithelial Morphogenesis


Book Description

For more than 30 years, Current Topics in Developmental Biology has provided a forum for dissemination and discussion of new ideas and thought in developmental biology. Bringing together a series of articles on the structural, functional, and developmental characteristics of epithelials, this thematic volume represents a timely and valuable contribution to an exciting and multidisciplinary field of study. Because defects in epithelial function and growth control play a major role in human disease—cancerous tumors, spina bifida, cardiac malformations, for example—this volume will be of particular interest to researchers working in cancer drug design and development and those working in therapeutic areas to treat developmental abnormalities. Coverage of current research findings and thought on cell-cell and cell-extracellular matrix interactions gives researchers a better understanding of the processes of remodeling and morphogenesis, which are critical to the development of drugs aimed at disrupting the early formation and proliferation of cancerous tumors Inclusion of chapters that discuss the most contemporary thought on cell polarity and tissue morphogenesis, providing researchers with a better understanding of the control of cellular organization and polarity (particularly important to researchers who are developing treatments for developmental abnormalities and those working in cancer drug development) Use of a variety of animal models, allowing researchers to compare and contrast the molecular mechanisms that underlie cell-cell and cell-extracelluar matrix interactions in a variety of research models




Tissue Remodeling and Epithelial Morphogenesis


Book Description

For more than 30 years, Current Topics in Developmental Biology has provided a forum for dissemination and discussion of new ideas and thought in developmental biology. Bringing together a series of articles on the structural, functional, and developmental characteristics of epithelials, this thematic volume represents a timely and valuable contribution to an exciting and multidisciplinary field of study. Because defects in epithelial function and growth control play a major role in human disease-cancerous tumors, spina bifida, cardiac malformations, for example-this volume will be of particular interest to researchers working in cancer drug design and development and those working in therapeutic areas to treat developmental abnormalities. Coverage of current research findings and thought on cell-cell and cell-extracellular matrix interactions gives researchers a better understanding of the processes of remodeling and morphogenesis, which are critical to the development of drugs aimed at disrupting the early formation and proliferation of cancerous tumors Inclusion of chapters that discuss the most contemporary thought on cell polarity and tissue morphogenesis, providing researchers with a better understanding of the control of cellular organization and polarity (particularly important to researchers who are developing treatments for developmental abnormalities and those working in cancer drug development) Use of a variety of animal models, allowing researchers to compare and contrast the molecular mechanisms that underlie cell-cell and cell-extracelluar matrix interactions in a variety of research models







The Cadherin Superfamily


Book Description

This book presents an overview of the entire field of cadherin research and provides the current basic concept of cadherins. Cadherins have been widely accepted as key regulators of animal development and physiological functions, and it also has become clear that they play essential roles in various human diseases. With contributions by leading scientists, the book covers various aspects of the cadherin superfamily including the history of cadherin research, basic properties of classical cadherins as well as non-classical cadherins, cadherin-associated proteins, and the roles of cadherins in health and diseases. In addition, the book presents some contradictory results and important unanswered questions, and the authors propose their working hypotheses or future directions, to inspire future studies. This volume enables graduate students and young researchers to learn the basics and gain a comprehensive image of the cadherin superfamily, and experts in the field will easily find various topics of interest in relevant areas of study. Additionally, a list of cadherin-related diseases is included for quick reference to cadherins in human diseases.




Cell Polarity in Development and Disease


Book Description

Cell Polarity in Development and Disease offers insights into the basic molecular mechanisms of common diseases that arise as a result of a loss of ordered organization and intrinsic polarity. Included are diseases affecting highly polarized epithelial tissues in the lung and kidney, as well as loss and gain of cell polarity in the onset and progression of cancer. This book provides a basic resource for understanding the biology of polarity, offering a starting point for those thinking of targeting cell polarity for translational medical research. Provides basic science understanding of cell polarity disease and development Covers diseases affecting polarized epithelial tissues in the lung and kidney, also covering the progression of cancer Includes historical context of cell polarity research for potential future breakthroughs




Muscle Regeneration


Book Description




Drosophila Eye Development


Book Description

1 Kevin Moses It is now 25 years since the study of the development of the compound eye in Drosophila really began with a classic paper (Ready et al. 1976). In 1864, August Weismann published a monograph on the development of Diptera and included some beautiful drawings of the developing imaginal discs (Weismann 1864). One of these is the first description of the third instar eye disc in which Weismann drew a vertical line separating a posterior domain that included a regular pattern of clustered cells from an anterior domain without such a pattern. Weismann suggested that these clusters were the precursors of the adult ommatidia and that the line marks the anterior edge of the eye. In his first suggestion he was absolutely correct - in his second he was wrong. The vertical line shown was not the anterior edge of the eye, but the anterior edge of a moving wave of patterning and cell type specification that 112 years later (1976) Ready, Hansen and Benzer would name the "morphogenetic furrow". While it is too late to hear from August Weismann, it is a particular pleasure to be able to include a chapter in this Volume from the first author of that 1976 paper: Don Ready! These past 25 years have seen an astonishing explosion in the study of the fly eye (see Fig.




Encyclopedia of Signaling Molecules


Book Description

The second edition of this encyclopedia presents over 400 biologically important signaling molecules and the content is built on the core concepts of their functions along with early findings written by some of the world’s foremost experts. The molecules are described by recognized leaders in each molecule. The interactions of these single molecules in signal transduction networks will also be explored. This encyclopedia marks a new era in overview of current cellular signaling molecules for the specialist and the interested non-specialist alike. Currently, there are more than 30,000 genes in human genome. However, not all the proteins encoded by these genes work equally in order to maintain homeostasis. Understanding the important signaling molecules as completely as possible will significantly improve our research-based teaching and scientific capabilities.




Extracellular Matrix in Development and Disease


Book Description

Extracellular matrix proteins are serious, common human diseases that are caused by mutations in genes that encode these proteins. This has spurred a great number of researchers to study the extracellular matrix, sometimes by choice and sometimes by necessity. Much progress has been made in the last decade towards understanding what matrix proteins do and how cells interact with and respond to them. Volume 15 is a compilation of reviews by experts in their respective fields. The chapters in this book address the biology of a broad spectrum of extracellular matrix molecules and their functions in development and disease. This book has been designed to focus on a diverse subset of matrix proteins that have been shown to be important for development, function, and disease. The book therefore both presents a broad view of the field and provides crucial details about some of the best-studied matrix molecules. * Written by leaders in the field * Discusses the potential of matrix components to be used as therapeutic tools for the treatment and prevention of cancer * Offers a section on integrin signaling and the development of the central nervous system, detailing the migration of neurons and the glia * Covers a diverse array of molecules such as laminins, collagens, heparan sulfate proteoglycans, integrins, and more