Regulation of SNF2h Chromatin Remodeling Activity


Book Description

ATP-dependent chromatin remodeling is performed by ATPase-containing complexes of the SNF2 super family. There are three major sub-families of remodeling complexes: SWI/SNF, CHD, and ISWI. The diversity of ISWI-based complexes is conserved in organisms. For example, in human the hACF complex consists of hACF1 and human ISWI SNF2h; the CHRAC consists of hACF1, SNF2h, and the p15/p17 dimer; the WICH complex consists of WSTF and SNF2h, and the RSF complex consists of SNF2h and Rsf1. ISWI-based complexes have divergent in vitro as well as in vivo activities. It has been hypothesized that the binding partners regulate ISWI activity differently, therefore resulting in varying in vivo functions of ISWI-based complexes.




Activation Mechanisms of SWI2/SNF2 Family ATP-Dependent Chromatin Remodeling Enzymes


Book Description

Eukaryotic genomes are packaged into chromatin: a highly heterogeneous structure composed of nucleic acids and proteins. This packaging controls access to the underlying DNA sequences and, as a result plays a critical role in nearly all genomic processes. The primary molecular structure of chromatin is the nucleosome: ~147 bp of DNA wrapped around a core of histone proteins. Both the location and status of nucleosomes in the genome are critical for the proper packaging of chromatin. As a result, cells have evolved several sophisticated molecular machines to disrupt or modify nucleosomes to achieve specific packaging states. A critical member of these machines are the SWI2/SNF2 superfamily of ATP-dependent chromatin remodeling enzymes, which are DNA translocases that harness the energy of ATP hydrolysis to physically disrupt nucleosomes. Because of their central role in control nucleosome structure throughout the genome, remodelers play roles in virtually all DNA-dependent process, but the precise mechanisms of how remodelers disrupt nucleosomes and how this disruption is coupled to other molecular events remains very poorly understood. In this thesis we focus on understanding the remodeling mechanisms of two subfamilies of SWI2/SNF2 remodelers that slide nucleosomes: INO80 and ISWI. To understand how these and other SWI2/SNF2 ATP-dependent remodelers might cooperate with nuclear machinery to enable biological processes, we first review our broad understanding of remodeling mechanism as it compares to another molecular motor that disrupts nucleosomes: RNA polymerase. We then speculate on how these two distinct families cooperate to accomplish transcription on chromatin templates. After this, we set out to uncover elements of nucleosome that control remodeler activity and identify a conserved surface of the nucleosome known as the acidic patch that is required to activate both ISWI and INO80 family remodelers. Using a combination of biochemical and biophysical assays, we show that this surface activates remodeling by these two families after they bind the nucleosome. For the ISWI remodeler SNF2h, the acidic patch activates remodeling by serving as a landing pad for the binding of autoinhibitory domains while INO80 uses a separate mechanism. We then solve the near-atomic CryoEM structure of SNF2h bound to the nucleosome. Unexpectedly, we find that SNF2h binding in an activated state asymmetrically distorts the histone core of the nucleosome and that this may be important in regulating the activity of the enzyme. Finally, we test the hypothesis that by measuring remodeling activity of nucleosomes with site-specific restraints in the histone core. We find that specifically restraining histone dynamics in locations across all 4 histone proteins inhibits SNF2h-mediated nucleosome sliding. Taken together, these results suggest that remodelers rely on the structure and dynamics of both the DNA and protein components of the nucleosome to accomplish their activities.




SNF2H-Mediated Chromatin Remodelling and Its Regulation of the Pluripotent State


Book Description

In embryonic stem cells (ESCs), the SWI/SNF, CHD, and INO80 families of ATP-dependent chromatin remodellers have been implicated in maintaining pluripotency-associated gene expression, however the involvement of ISWI family remodellers has yet to be defined. Here, we explore the importance of the mammalian ISWI homologue SNF2H (Smarca5) by deriving a conditional knockout mouse ESC line and observing the consequences of SNF2H depletion on the pluripotent state. Cre-mediated deletion of Snf2h disrupts hallmark characteristics of pluripotency, resulting in distinct morphological changes; reduced expression of the master transcription factors Oct4, Sox2, and Nanog; and reduced alkaline phosphatase activity. To understand the mechanisms of SNF2H-mediated regulation, we mapped SNF2H-bound nucleosomes genome-wide. SNF2H is broadly distributed across the genome, but is preferentially enriched at active regulatory regions and transcription factor binding sites. These findings demonstrate the importance of SNF2H in ESCs and shed light on genome-wide mechanisms of transcriptional regulation.




Fundamentals of Chromatin


Book Description

​​​​​​​​​​​​​While there has been an increasing number of books on various aspects of epigenetics, there has been a gap over the years in books that provide a comprehensive understanding of the fundamentals of chromatin. ​Chromatin is the combination of DNA and proteins that make up the genetic material of chromosomes. Its primary function is to package DNA to fit into the cell, to strengthen the DNA to prevent damage, to allow mitosis and meiosis, and to control the expression of genes and DNA replication. The audience for this book is mainly newly established scientists ​and graduate students. Rather than going into the more specific areas of recent research on chromatin the chapters in this book give a strong, updated groundwork about the topic. Some the fundamentals that this book will cover include the structure of chromatin and biochemistry and the enzyme complexes that manage it.




Regulatory Mechanisms in Transcriptional Signaling


Book Description

Regulatory Mechanisms in Transcriptional Signaling, volume of Progress in Molecular Biology and Translational Science, includes in-depth discussion on roles of Chromatin remodeling proteins in nuclear receptor signaling, and the ANCCA regulator in cancer. This important resource, edited by Dr. Debabrata (Debu) Chakravarti, offers research on the progesterone receptor action in leiomyoma and endometrial cancer and emerging roles of the ubiquitin protein system in nuclear hormone receptor signaling to provide the reader with expert discussions of up-to-date research.







Chromatin and Chromatin Remodeling Enzymes Part C


Book Description

DNA in the nucleus of plant and animal cells is stored in the form of chromatin. Chromatin and the chromatin remodelling enzymes play an important role in gene transcription. Genetic assays of chromatin modification and remodeling Histone modifying enzymes ATP-dependent chromatin remodeling enzymes




Chromatin Remodelling


Book Description

The term "chromatin remodelling" is widely used to describe changes in chromatin structure which is controlled by histone-modifying enzymes, chromatin remodelling complexes, non-histone DNA-binding proteins and noncoding RNAs. Many human diseases such as cancer, various genetic syndromes, autism and infectious disease have been linked to the disruption of these control processes by genetic, environmental or microbial factors. Therefore, to unravel the mechanisms by which they operate is one of the most exciting and rapid developing fields of modern biology and will contribute to new ways in treatment of these diseases. The chapters in this book will focus on recent advances in our understanding of the mechanisms that govern the dynamic structural of chromatin, thereby providing important insights into gene regulation, DNA repair, and human diseases.







Modifications of Nuclear DNA and its Regulatory Proteins


Book Description

DNA methylation is essential for the normal development and functioning of organisms. This volume discusses the latest developments in this very active field of research. It presents the evolution of DNA methylation, mammalian DNA methyltransferases, DNA methylation and demethlyation, DNA methylation and silencing and the role it plays in medicine including cancer. Discusses new discoveries, approaches, and ideas Contributions from leading scholars and industry experts Reference guide for researchers involved in molecular biology and related fields