RNA-Based Regulation in Human Health and Disease


Book Description

RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational) and future prospects for RNA-based diagnostics and therapeutics. One of the core strengths of the book includes spectrum of disease-specific chapters from experts in the field highlighting RNA-based regulation in metabolic & neurodegenerative disorders, cancer, inflammatory disease, viral and bacterial infections. We hope the book helps researchers, students and clinicians appreciate the role of RNA-based regulation in genome regulation, aiding the development of useful biomarkers for prognosis, diagnosis, and novel RNA-based therapeutics. - Comprehensive information of non-canonical RNA-based genome regulation modulating human health and disease - Defines RNA classes with special emphasis on unexplored world of noncoding RNA at different hierarchies - Disease specific role of RNA - causal, prognostic, diagnostic and therapeutic - Features contributions from leading experts in the field




Long Noncoding RNAs in Plants


Book Description

The growth of human population has increased the demand for improved yield and quality of crops and horticultural plants. However, plant productivity continues to be threatened by stresses such as heat, cold, drought, heavy metals, UV radiations, bacterial and fungal pathogens, and insect pests. Long noncoding RNAs are associated with various developmental pathways, regulatory systems, abiotic and biotic stress responses and signaling, and can provide an alternative strategy for stress management in plants. Long Noncoding RNAs in Plants: Roles in development and stress provides the most recent advances in LncRNAs, including identification, characterization, and their potential applications and uses. Introductory chapters include the basic features and brief history of development of lncRNAs studies in plants. The book then provides the knowledge about the lncRNAs in various important agricultural and horticultural crops such as cereals, legumes, fruits, vegetables, and fiber crop cotton, and their roles and applications in abiotic and biotic stress management. - Includes the latest advances and research in long noncoding RNAs in plants - Provides alternative strategies for abiotic and biotic stress management in horticultural plants and agricultural crops - Focuses on the application and uses of long noncoding RNAs




Non-Coding RNAs


Book Description

General inspection of a role performed in the cell by RNAs allows us to distinguish three major groups of transcripts: I. protein-coding mRNAs, II. non-coding housekeeping and III. regulatory RNAs. The housekeeping RNAs include RNA classes that are generally, constitutively expressed and whose presence is required for normal function and viability of the cells. On the other hand, a group of regulatory RNAs includes RNA species that are expressed at certain stages of organism development or cell differentiation or as a response to external stimuli and can affect expression of other genes on the levels of transcription or translation. Non-coding RNA transcripts form a heterogeneous class of RNAs that can not be characterized by a single specific function. Initially, the term non-coding RNA (ncRNA) was used primarily to describe polyadenylated and a capped eukaryotic RNAs transcribed by RNA polymerase II, but lacking long open reading frames. Now, this definition can be extended to cover all RNA transcripts that do not show protein-coding capacity and is sometimes used to describe any RNA that does not encode protein, including introns. This book is an in-depth look at the function of Non-Coding RNAs and their relationship to Molecular Biology and Molecular Biology.




Cancer Genomics


Book Description

The discovery of microRNA (miRNA) involvement in cancer a decade ago, and the more recent findings of long non-coding RNAs in human diseases, challenged the long-standing view that RNAs without protein-coding potential are simply “junk” transcription within the human genome. These findings evidently changed the dogma that “DNA makes RNA makes protein” by showing that RNAs themselves can be essential regulators of cellular function and play key roles in cancer development. MiRNAs are evolutionarily conserved short single-stranded transcripts of 19–24 nucleotides in length. They do not code for proteins, but change the final output of protein-coding genes by regulating their transcriptional and/or translation process. Ultraconserved genes (UCGs) are non-coding RNAs with longer length (>200bp) that are transcribed from the ultraconserved genomic region. Both miRNAs and UCGs are located within cancer-associated genomic regions (CAGRs) and can act as tumor suppressors or oncogenes. In this chapter, we present principles and concepts that have been identified over the last decade with respect to our understanding of the function of non-coding RNAs, and summarize recent findings on the role of miRNAs and UCGs in cancer development. Finally, we will conclude by discussing the translational potential of this knowledge into clinical settings such as cancer diagnosis, prognosis and treatment.




Small RNAs:


Book Description

In recent years, the discovery of functional small RNAs has brought about an unprecedented revolution within the field of molecular biology. This volume describes strategies for the discovery and validation of small RNAs. It provides a snapshot of our current understanding of the different mechanisms triggered by small RNAs and the variations encountered in different organisms.




Plant Long Non-Coding RNAs


Book Description

This volume focuses on various approaches to studying long non-coding RNAs (lncRNAs), including techniques for finding lncRNAs, localization, and observing their functions. The chapters in this book cover how to catalog lncRNAs in various plant species; determining subcellular localization; protein interactions; structures; and RNA modifications. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and innovative, Plant Long Non-Coding RNAs: Methods and Protocols is a valuable resource that aids researchers in understanding the functions of lncRNAs in different plant species, and helps them explore currently uncharted facets of plant biology.




Regulation of Gene Expression by Small RNAs


Book Description

New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p




Epigenetics in Psychiatry


Book Description

Epigenetics in Psychiatry, Second Edition covers all major areas of psychiatry in which extensive epigenetic research has been performed, fully encompassing a diverse and maturing field, including drug addiction, bipolar disorder, epidemiology, cognitive disorders, and the uses of putative epigenetic-based psychotropic drugs. Uniquely, each chapter correlates epigenetics with relevant advances across genomics, transcriptomics, and proteomics. The book acts as a catalyst for further research in this growing area of psychiatry. This new edition has been fully revised to address recent advances in epigenetic understanding of psychiatric disorders, evoking data consortia (e.g., CommonMind, ATAC-seq), single cell analysis, and epigenome-wide association studies to empower new research. The book also examines epigenetic effects of the microbiome on psychiatric disorders, and the use of neuroimaging in studying the role of epigenetic mechanisms of gene expression. Ongoing advances in epigenetic therapy are explored in-depth. - Fully revised to discuss new areas of research across neuronal stem cells, cognitive disorders, and transgenerational epigenetics in psychiatric disease - Relates broad advances in psychiatric epigenetics to a modern understanding of the genome, transcriptome, and proteins - Catalyzes knowledge discovery in both basic epigenetic biology and epigenetic targets for drug discovery - Provides guidance in research methods and protocols, as well how to employ data from consortia, single cell analysis, and epigenome-wide association studies (EWAS) - Features chapter contributions from international leaders in the field




Molecular Mechanisms of Cell Differentiation in Gonad Development


Book Description

This book presents the current state of knowledge on the origin and differentiation of cell lines involved in the development of the vertebrate male and female gonads with particular emphasis on the mouse. It also discusses the processes leading to the testis- and ovary-specific structures and functions. The individual chapters review the origin and differentiation of the somatic cells of the genital ridges; the formation and migration of primordial germ cells in mouse and man; the gonadal supporting cell lineage and mammalian sex determination; differentiation of Sertoli and granulosa cells; mesonephric cell migration into the gonads and vascularization; origin and differentiation of androgen-producing cells in the gonads; germ cell commitment to the oogenic versus spermatogenic pathway and the role of retinoic acid; ovarian folliculogenesis; control of oocyte growth and development by intercellular communication within the follicular niche; biology of the Sertoli cell in the fetal, pubertal and adult mammalian testis; mechanisms regulating spermatogonial differentiation; stem cells in mammalian gonads; the role of microRNAs in cell differentiation during gonad development; human sex development and its disorders; as well as methods for the study of gonadal development.




Small Non-Coding RNAs


Book Description

This volume contains state-of-the-art methods tackling all aspects of small non-coding RNAs biology. Small Non-Coding RNAs: Methods and Protocols guides readers through customized dedicated protocols and technologies that will be of valuable help to all those willing to contribute deciphering the numerous functions of small non-coding RNAs. Written in the highly successful Methods of Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubles troubleshooting and avoiding known pitfalls. Instructive and practical, Small Non-Coding RNAs: Methods and Protocols reaches out to biochemists, cellular and molecular biologists already working in the field of RNA biology and to those just starting to study small non-coding RNAs.