Gut Peptides


Book Description

Provides a comprehensive approach to gastrointestinal hormones, for clinicians and scientists who are interested in hormonal regulation of the gastrointestinal tract. The first section discusses general issues related to peptides as messengers, including receptors and signal transduction and control of gene expression. The second section presents the biochemical and physiological features of the gastrointestinal hormones and neuropeptides. The third section integrates these peptides into physiological and pathophysiological regulatory pathways of the gut. Annotation copyright by Book News, Inc., Portland, OR




Gut Hormones


Book Description




Trends in Regulatory Peptides


Book Description

Regulatory peptides represent the most diverse and versatile family of messenger molecules. They are produced by all living organisms from bacteria to mammals. They are involved in a wide variety of biological functions. Biologically active peptides and their receptors thus constitute an unlimited source of inspiration for the development of innovative drugs and cosmetics. The present eBook is a unique collection of research articles and reviews that provide a representative examplification of the latest progress in regulatory peptide research.




Regulation of Gastrointestinal Mucosal Growth


Book Description

The mammalian gastrointestinal mucosa is a rapidly self-renewing tissue in the body, and its homeostasis is preserved through the strict regulation of epithelial cell proliferation, growth arrest, and apoptosis. The control of the growth of gastrointestinal mucosa is unique and, compared with most other tissue in the body, complex. Mucosal growth is regulated by the same hormones that alter metabolism in other tissues, but the gastrointestinal mucosa also responds to host events triggered by the ingestion and presence of food within the digestive tract. These gut hormones and peptides regulate the growth of the exocrine pancreas, gallbladder epithelium, and the mucosa of the oxyntic gland region of the stomach and the small and large intestines. Luminal factors, including nutrients or other dietary factors, secretions, and microbes that occur within the lumen and distribute over a proximal-to-distal gradient, are also crucial for maintenance of normal gut mucosal regeneration and could explain the villous-height-crypt-depth gradient and variety of adaptation, since these factors are diluted, absorbed, and destroyed as they pass down the digestive tract. Recently, intestinal stem cells, cellular polyamines, and noncoding RNAs are shown to play an important role in the regulation of gastrointestinal mucosal growth under physiological and various pathological conditions. In this book, we highlight key issues and factors that control gastrointestinal mucosal growth and homeostasis, with special emphasis on the mechanisms through which epithelial renewal and apoptosis are regulated at the cellular and molecular levels.




Endocrinology of the Gut


Book Description




Relationships Among the Brain, the Digestive System, and Eating Behavior


Book Description

On July 9-10, 2014, the Institute of Medicine's Food Forum hosted a public workshop to explore emerging and rapidly developing research on relationships among the brain, the digestive system, and eating behavior. Drawing on expertise from the fields of nutrition and food science, animal and human physiology and behavior, and psychology and psychiatry as well as related fields, the purpose of the workshop was to (1) review current knowledge on the relationship between the brain and eating behavior, explore the interaction between the brain and the digestive system, and consider what is known about the brain's role in eating patterns and consumer choice; (2) evaluate current methods used to determine the impact of food on brain activity and eating behavior; and (3) identify gaps in knowledge and articulate a theoretical framework for future research. Relationships among the Brain, the Digestive System, and Eating Behavior summarizes the presentations and discussion of the workshop.




Peptidomics


Book Description

The definitive guide to peptidomics- a hands-on lab reference The first truly comprehensive book about peptidomics for protein and peptide analysis, this reference provides a detailed description of the hows and whys of peptidomics and how the techniques have evolved. With chapters contributed by leading experts, it covers naturally occurring peptides, peptidomics methods and new developments, and the peptidomics approach to biomarker discovery. Explaining both the principles and the applications, Peptidomics: Methods and Applications: * Features examples of applications in diverse fields, including pharmaceutical science, toxicity biomarkers, and neuroscience * Details the successful peptidomic analyses of biological material ranging from plants to mammals * Describes a cross section of analytical techniques, including traditional methodologies, emerging trends, and new techniques for high throughput approaches An enlightening reference for experienced professionals, this book is sufficiently detailed to serve as a step-by-step guide for beginning researchers and an excellent resource for students taking biotechnology and proteomics courses. It is an invaluable reference for protein chemists and biochemists, professionals and researchers in drug and biopharmaceutical development, analytical and bioanalytical chemists, toxicologists, and others.




Brain Peptides


Book Description

The first major comprehensive overview of the anatomical, physiological, evolutionary, and embryological aspects of brain peptides, focusing on peptides described in the past decade. Examines the role of peptides in affecting major homeostatic systems. Presents the methodologies applicable to the study of brain peptides. Summarizes current knowledge of individual peptides.







The Exocrine Pancreas


Book Description

The secretions of the exocrine pancreas provide for digestion of a meal into components that are then available for processing and absorption by the intestinal epithelium. Without the exocrine pancreas, malabsorption and malnutrition result. This chapter describes the cellular participants responsible for the secretion of digestive enzymes and fluid that in combination provide a pancreatic secretion that accomplishes the digestive functions of the gland. Key cellular participants, the acinar cell and the duct cell, are responsible for digestive enzyme and fluid secretion, respectively, of the exocrine pancreas. This chapter describes the neurohumoral pathways that mediate the pancreatic response to a meal as well as details of the cellular mechanisms that are necessary for the organ responses, including protein synthesis and transport and ion transports, and the regulation of these responses by intracellular signaling systems. Examples of pancreatic diseases resulting from dysfunction in cellular mechanisms provide emphasis of the importance of the normal physiologic mechanisms.